Name:

ID :

CSE 130, Fall 2013: Midterm Examination
Nov 5th, 2013

Do not start the exam until you are told to.

This is a open-book, open-notes exam, but with
no computational devices allowed (such as calcula-

tors/cellphones/laptops).

Do not look at anyone else’s exam. Do not talk to 1. 20 Points
anyone but an exam proctor during the exam.

Write your answers in the space provided. 9. 920 Points

Wherever it gives a line limit for your answer, write
no more than the specified number of lines. The rest

will be ignored. 3. 30 Points

Work out your solution in blank space or scratch pa-
per, and only put your answer in the answer blank TOTAL 70 Points
given.

In all exercises, you are allowed to use the “@” op-
erator.

Good luck!

1. [20 points | Let’s warm up with two small folds. For your reference, the type of fold_left is given below:
fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a
a. [10 points] Use fold_left to implement count : ’a list -> ’a -> int, which returns the number

of times a given element occurs in a list. For example:

count [1;2;3;4;5] 10;;
- :int =0
count [1;2;3;4;5] 3;;
- : int =1
count [1;3;2;3;4;3;5] 3;;
- : int = 3
Fill in the implementation of count below:

let count 1 x =

b. [10 points] Use fold_left to implement make_palyndrome : ’a list -> ’a list, which takes a list
and returns a palyndrome, which is produced by adding the elements of the original list in reserve order
to the beginning of the original list. For example:

make_palyndrome [1;2];;

- : int list = [2; 1; 1; 2]

make_palyndrome [1;2;3];;

- : int 1list = [3; 2; 1; 1; 2; 3]
make_palyndrome [];;

- : ’a list = []

Fill in the implementation of make_palyndrome below using fold_left:

let make_palyndrome 1 =

2. [20 points] In this question you will use fold to write a slight variant of fold and then you will use this
variant of fold to implement indexing into a list.
a. [10 points | Fold2. You will first start by using fold to write another function:

fold_2 : (’a => ’b -> int -> ’a) -> ’a -> ’b list -> ’a+

This variant of fold works exactly like the original fold, except that the folding function gets an additional
int parameter, which is the index of the element that is passed into the folding function. For example
the call:

fold_ 2 £ "" ["a"; "b";"c"]
would result in
(f (£ (£ "™ "a" 0) "p" 1) "c" 2)

Fill in the implementation of fold_2 below using fold:

let fold 2 £ b1 =

b. |

10
ith :

points]

Indexing.

You

will
’a list -> int -> ’a -> ’a, which returns the i

now

t

use fold_2 to
b element of a list.

write a function
In particular, given

a list 1, an integer index i greater or equal to 0, and a “default” value d, then (ith 1 i d) returns the
it" element of the list 1, or d if this element does not exists. For example:

ith [Ilall;Ilbll;llcll;lld"] 0

Fill in the implementation of ith below using fold_2:

let rec ith 1 i d =

: string = "a"

lth [llall;llbll;llcll;lldll] 1

: string = "b"

ith [Ilall ; Ilbll ; IICII ; lldll] 2

: string = "c"

ith [llall.IIblI.Ilcll.lldII] 3

: string = "d"

ith [Ilall ; Ilbll ; IICII ; lldll] 4

: string = ""

nn.,. .
)

nn. .
EI)

nn., .
)

nn. .
LI

nn., .
E)

3.

[30 points]| Consider the following binary tree datatype:

type ’a fun_tree =
| Leaf of (’a -> ’a)

| Node of (’a fun_tree) * (’a fun_tree);;

a. [10 points | ApplyAll. You will implement apply_all :

’a fun_tree -> ’a -> ’a, which applies

all the functions in the tree, using an in-order traversal. For example, suppose we had the following:

let f1 x =x + 1;;
val £f1 : int -> int =

let f2 x = x * 2;;
val f2 : int -> int =

let £f3 x = x + 3;;
val £3 : int -> int =

let t = Node(Leaf f1, Node(Leaf f2, Leaf £3));;

val t : int fun_tree = Node (Leaf <fun>, Node (Leaf <fun>, Leaf <fun>))

apply_all t O;;
- :int =5

In particular, (apply_all t 0) computes (£3 (£2 (£1 0))). Now fill in the implementation of fold_2

below using fold:

let rec apply_all t x =

b. [10 points | For each call to apply_all below, write down the value returned by apply_all:

let f1 = (+) 1;;
let f2 = (=) 2;;
let £3 = (+) 3;;

let t = Node(Node(Leaf f1, Leaf f2), Leaf £3);;

apply_all t O;;

let f1 = (7) "a";;
let f2 x = x ~ "b";;
let £f3 x = x ~ "ab";;

let t = Node(Leaf f1, Node(Leaf f2, Leaf £3));;

apply_all t "123";;

let f1 = List.fold_left (fun x y -> (y*2)::x) [1;;
let f2 = List.fold_left (fun x y -> x@[yl) [1;;
let t = Node(Node(Leaf f1, Leaf f1), Node(Leaf f1, Leaf f2));;

apply_all t [1;2;3];;

c. [10 points] Compose. You will now write a function:
compose : ’a fun_tree -> ’a fun_tree -> ’a fun_tree

which takes two trees of the same shape and size, and returns a new tree in which the function stored
at each leaf is the mathematical composition of the functions stored at the corresponding leaves in the
original two trees. Recall that the mathematical composition of two functions f; and f, is a function
f3(x) = fi(f2(z)). For example, consider:

let t1 = Node(Leaf f1, Leaf f2);;
let t2 = Node(Leaf f3, Leaf f4);;
let t3 = compose tl t2;;

In this example, t3 would be the tree Node(Leaf f5, Leaf £6), where £5 is the mathematical composi-
tion of £1 and £3 and £6 is the mathematical composition of £2 and f4.
Fill in the implementation of compose below:

let rec compose tl t2 =

match (t1,t2) with

