Class-based model

« Have classes that describe the format of
objects

» Create objects by stating the class of the
object to be created.

» The created object is called an instance
of the class

Class-based model

« In a class based model, the class is
sometimes an object too (as is the case in
Python)

« Q: what is the class of the class object?

Class-based model

« In a class based model, the class is
sometimes an object too (as is the case in
Python)

* Q: what is the class of the class object?

- The “meta-class”? But then do we have a
meta-meta-class?

- many possibilities, but no clear answer
- turns out to be a nasty problem!

What’s the alternative?

« Suppose we didn’t have classes

« How would one survive?

Prototype-based models

« Just have objects
- Create a new object by cloning another one
- Add/update fields later
» Benefits:
- Simplifies the definition of the language
- Avoids meta-class problem
» Drawbacks:
- Don’t have classes for static typing
- Some find the model harder to grock
« Python has hints of a prototype-based language.
Go back to code

Methods

Methods

o~ [f 2]

x> [l
7 @

Yok —

Structural, nominal subtyping

class Point: class Point2:
x=0 x=0
y=0 y=0
def move(self,dx,dy): def move(self,dx,dy):
self.x = self.x + dx self.x = self.x + dx
self.y = self.y + dy self.y = self.y + dy
p = Point() q = Point2()

« p and q of the same type?
- In Java, no: nominal subtyping (using names
of classes to determine subtyping)
- In Python, yes: structural subtyping (using
fields/methods to determine subtyping)

Next: constructors

« Go back to code

Inheritance

« Key concept of OO languages

« Someone tell me what inheritance is?

Inheritance

» Key concept of OO languages

« Someone tell me what inheritance is?
« isa “concept”

« Examples?

Examples of inheritance

Overriding

» Super-class method can be overwritten in
sub-class

» Polymorphism
- external clients can write code that handles
many different kinds of objects in the same
way
- don’t care about implementation details: as
long as the object knows to draw itself,
that’s good enough

Polymorphism, continued

« Super-class can have methods that are
not overridden, but that work differently
for different sub-classes

» For example: super-class method
functionality changes because the super-
class calls a method that gets overwritten
in the sub-class

Simple example

class Shape:
def draw(self, screen):
some python code here
def erase(self, screen):
screen.setcolor(“white”)
self.draw(screen)
screen.setcolor(“black”)

AN

Stepping away from Python

class Rec(Shape): class Oval(Shape):
def draw(self, screen): def draw(self, screen):
some python code here # some python code here

+ What are the fundamental issues with
inheritance?

Stepping away from Python

« What are the fundamental issues with
inheritance?

« Dispatch mechanism
- most compilers use v-tables
- more complicated with multi-methods

» Overloading vs. overriding
- what’s the difference?

« How to decide on the inheritance graph?
- not always obvious, see next example

Rectangle and Square

class Rectangle: class Square:
length = 0 length = 0
width = 0 def area(this):
def area(this): return this.length *
return this.length * this.length
this.width

¢ Which should be a sub-class of which?

Rectangle and Square

class Rectangle:
length = 0
width = 0
def area(this):
return this.length *
this.width

class Square:
length = 0
def area(this):
return this.length *
this.length

« Which should be a sub-class of which?

« Answer is not clear...

Option 1: Rectangle isa Square

class Square:
length = 0
def area(this):
return this.length *
this.length

I

class Rectangle(Square):
width =0
def area(this):
return this.length *
this.width

Option 1: Rectangle isa Square

class Square:
length = 0
def area(this):
return this.length *
this.length

\

class Rectangle(Square):
width = 0
def area(this):
return this.length *
this.width

+ Store only what is
needed (one field for
square)

—Does not follow “isa”
relationship from math
(rectangle is not a
square...)

—Have to override area
method

Option 2: Square isa Recangle

class Rectangle:
length =0
width = 0
def area(this):
return this.length *
this.width

)

class Square(Rectangle):
__init__(self,len):
self.length = len
self.width = len

Option 2: Square isa Recangle

class Rectangle:
length =0
width = 0
def area(this):
return this.length *
this.width

|

__init__(self,len):
self.length = len
self.width = len

class Square(Rectangle):

+ Follows isa relationship
from math

+ Don’t need to write two
area methods

— Can’t enfore invariant
that length=width

— Use two fields for Square
(len and width)

But, does it matter? Performance is a
tricky matter. Often better to
implement first, then use profiler to
find where bottlenecks are...

Option 3:

class Shape: |
class Rectangle(Shape): class Square(Shape):
length = 0 length = 0
width = 0 def area(this):
def area(this): return this.length *
return this.length * this.length
this.width

Option 3:

class Shape:

|
N

Complex numbers

class Rectangle(Shape):
length = 0
width = 0
def area(this):
return this.length *

class Square(Shape):
length = 0
def area(this):
return this.length *
this.length

this.width

+ Store only what is needed (one field for square)

— Does not follow “isa” relationship from math
(rectangle is not a square...)

— Have to write two area methods

class Complex:
RealPart = 0

class Real: |
ComplexPart = 0

RealPart = 0

The same exact options
present themselves here,
with the same tradeoffs!

Summary of (single) inheritance

« Inheritance is a powerful mechanism

« From the programmer’s perspective,
difficulty is in defining the inheritance

diagram

« From a language implementer’s
perspective, difficulty is in making
dynamic dispatch work

Multiple inheritance

class ColorTextBox(ColorBox, TextPoint):
def draw(self,screen,pos):
ColorBox.draw(self,screen,pos)
r=TextPoint.draw(self,screen,pos)
returnr

def __str__(self):
return ColorBox.__str__(self) + " text: " + str(self.text)

What are the issues?

« Inheritance tree becomes a DAG
* What’s the problem?

What are the issues?

« Issue 1: fields/methods with the same
name inherited from two different places

« |ssue 2: diamond problem, same exact
field inherited by two different paths

What are the issues?

« Because of these issues, Java does not
allow multiple inheritance

«» Java does allow multiple inheritance of
interfaces. How is that different from
general multiple inheritance?

How Python solves these issues

« When you say: class C(C,, C,, ...)

« For any attribute not defined in C, Python
first looks up in C,, and parents of C,

« If it doesn’t find it there, it looks in C,
and parents of C,

e And so on...
« What kind of search is this?

How Python solves these issues

How Python solves these issues

Does this solve the two issues?

o Issue 1: fields/methods with the same
name inherited from two different places

- Solved because we give leftmost parent
priority

« |ssue 2: diamond problem, same exact
field inherited by two different paths
- Solved because there is only one copy

Python’s solutions

« For certain methods, may want one
parent, whereas for other methods, may
want another. Can always overwrite
method and redirect to the right parent

« What about BFS?

Next up decorators

* See code

