
Recap from last Python lecture

Interpreted, imperative, OO Language

• Everything is an object

• Dynamic Typing

Programs are made up of:

• Expressions

• Statements
– Assignment

– if/elif/else

– while-loops

– Functions

• Classes (still to come)

Today: Revisit some objects

• Exploit features and build powerful

expressions

Base: int, float, complex

Sequence: string, tuple, list

What can sequences do ?

Select

• i-th element: s[i]

• subsequence (“slice”): s[i:j]

Update -- For mutable sequences (e.g. Lists)

• Update i-th element: s[i] = e

• Update subsequence: s[i:j] = e

Update subsequence

Update subsequence: s[i:j] = e

• Changes the “object” referred to by s

• May change the length of the sequence

– Increase: if RHS length > j-i

– Decrease: if RHS length < j-i

s[i:j]=e

Update subsequence

>>> z = [1,2,3,4,5,6,7,8,9,10]

>>> z[3:6] = [“a”,“b”,“c”]

>>> z

[1,2,3,”a”,”b”,”c”,7,8,9,10]

>>> z[3:6] = [“a”, “b”] * 2

>>> z

[1,2,3,”a”,”b”,”a”,”b”,7,8,9,10]

>>> z[4:]=[]

>>> z

[1,2,3,”a”]

>>> z[:0] = [“al”, “be”]

>>> z

[“al”,”be”,1,2,3,”a”,”b”,”a”,”b”,7,8,9,10]

s[i:j]=e

What else can sequences do ?

Q: Suppose you are given a sequence s

How to find if the element x appears in s ?

x in s

Works for any sequence type …

Sequence “contains” x in s

>>> “a” in “cat”

True

>>> “a” in “entebbe”

False

>>> “a” in (“c”, “a”, “t”)

True

>>> 2 in [1,2,3,4,5]

True

>>> 2 in [1,4,“92”,2.4]

False

What can sequences do ?

Select

• i-th element: s[i]

• subsequence (“slice”): s[i:j]

Update -- For mutable sequences (e.g. Lists)

• Update i-th element: s[i] = e

• Update subsequence: s[i:j] = e

Member

• Is an element in a sequence: x in s

Doesn’t Python have For-Loops ?

Why haven’t we seen For-loops yet ?

• Because they are connected to sequences

For-loops are used to iterate over sequences

• Unlike in C, but similar to new Java foreach

• Elegant, powerful mechanism – use it!

for x in s:

<BODY>

x=s[0]

<BODY>

x=s[1]

<BODY>

...

x=s[len(s)-1]

<BODY>

Iteration for x in s:

>>> for x in [“Midterms”, “ain’t”, “cool”]:

print x,len(x)

Midterms 5

ain’t 5

cool 4

Works for any sequence …

>>> for c in “chimichanga”:

print c*3

ccc

hhh

iii

mmm …

Iteration for x in s:

>>> s=0

>>> z=(1,2,3,4.0,”5”) #tuple

>>> for i in z:

s = s + i

ERROR

>>> s

10

Can’t add string to float

• Note that first 4 elts added!

• Dynamic Types!

• Run-time Type Error

>>> s=0

>>> for i in z:

s=s+float(i)

>>> s

15

Iteration + binding for x,… in s:

>>>craigslist = [("alien",3.50),

("dinosaur",1.90), ("quiz",100.50),

("quesadilla",3.00), ("good grade in

130","priceless")]

>>>for i,p in craislist:

print “One”,i,“costs”,p

One alien costs 3.5

One dinosaur costs 1.9

One quiz costs 100.5

One quesadilla costs 3.0

One good grade in 130 costs priceless

If s is a sequence of tuples/sequences, then we can

Bind to individual elements of “subsequences”

Old school For-loops

for(i=0,i<10,i++){

print i;

}

There’s a simple way to write

good-old for-loops

Built-in function: range

>>> range(10)

[0,1,2,3,4,5,6,7,8,9]

>> for i in range(10):

print i

>>> range(5,15) #fixed upper bound

[5,6,7,8,9,10,11,12,13,14]

>>> range(15,5,-1) #step

[15, 14, 13, 12, 11, 10, 9, 8, 7, 6]

But lookout!

For-loops are used to iterate over sequences

for x in s:

<BODY>

What if object referred to by s is changed in BODY?

Unpleasantness ensues:

• Try to ensure this never happens

• Iterate over a “copy” of the object

– s[:]

But lookout!
def funny_fun(s):

for x in s:

print x

s[len(s):] = [x]

Adds x to end object

being iterated over!

• Loops forever

def dup_by_k(s,k):

for x in s:

print x

s = s + x*k

return s

Creates new object w/

x*k added at end

Iteration object is what s

“originally” referred to,

which is unchanged

But lookout!
def funny_fun(s):

for x in s:

print x

s[len(s):] = [x]

Adds x to end object

being iterated over!

• Loops forever

def dup_by_k(s,k):

for x in s[:] :

print x

s = s + x*k

return s

Creates new object w/

x*k added at end

Iteration object is what s

“originally” referred to,

which is unchanged

To make it more

readable

What can sequences do ?

Select

• i-th element: s[i]

• subsequence (“slice”): s[i:j]

Update -- For mutable sequences (e.g. Lists)

• Update i-th element: s[i] = e

• Update subsequence: s[i:j] = e

Member: x in s

Iteration: for x in s: <body>

What else ?

Three useful functions for lists from ML ?

• map

• filter

• fold (a.k.a. reduce)

Built-in in Python:

map
def dup(x):

return 2*x

>>> z = range(10)

>>> z

[0,1,2,3,4,5,6,7,8,9]

>>> map(dup,z)

[0,2,4,6,8,10,12,14,16,18]

>>>map(dup,”chimichanga”)

[“cc”,”hh”,”ii”,”mm”,”ii”,”cc”,”hh”,”

aa”,”nn”,”gg”,”aa]

• Works for all sequences, returns a list

• More flexible ways to call it, see documentation

filter

>>> def even(x): return int(x)%2==0

>>> filter(even,range(10))

[0,2,4,6,8]

>>> filter(even,”1234096001234125”)

“240600242”

>>> filter(even,(1,2.0,3.2,4))

(2,4)

• Works for all sequences, returns same kind of sequence

• Again, note the polymorphism that we get from

dynamic types and conversion

reduce

>>> def add(x,y): x+y

>>> reduce(add,range(10),0)

45

>>> def fac(x):

def mul(x,y): return x*y

return reduce(mul,range(1, x+1),1)

>>> fac(5)

120

• i.e. fold

What can sequences do ?

Select

• i-th element: s[i]

• subsequence (“slice”): s[i:j]

Update -- For mutable sequences (e.g. Lists)

• Update i-th element: s[i] = e

• Update subsequence: s[i:j] = e

Member: x in s

Iteration: for x in s: <body>

map,filter,reduce

List Comprehensions

A cleaner, nicer way to do map-like operations

>>> [x*x for x in range(10)]

[0,1,4,9,16,25,36,49,64,81]

>>> [2*x for x in “yogurt cheese”]

[“yy”,”oo”,”gg”,”uu”,”rr”,”tt”,…]

List Comprehensions

Syntax: >>> [ex for x in s]

Equivalent to:

List Comprehensions

Syntax: >>> [ex for x in s]

Equivalent to: >>> def map_fn(x): return ex

>>> map(map_fn, s)

List Comprehensions

A cleaner, nicer way to do map+filter-like operations

>>> [x*x for x in range(10) if even(x)]

[0,4,16,36,64]

>>> [2*x for x in “0123456” if even(x)]

[“00”,“22”,“44”,“66”]

>>> [z[0] for z in craigslist if z[1]<3.0]

[“dinosaur”]

List Comprehensions

Syntax: >>> [ex for x in s if cx]

Equivalent to:

List Comprehensions

Syntax: >>> [ex for x in s if cx]

Equivalent to:

>>> [ex for x in s if cx]

>>> def map_fn(x): return ex

>>> def filter_fn(x): return cx

>>> map(map_fn, filter(filter_fn, s))

List Comprehensions

Can “nest” the for to iterate over multiple sequences

>>>[(x,y) for x in range(3) for y range(3)]

[(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,

1),(2,2)]

>>>[(x,y) for x in range(3) for y in range(3)

if x > y]

[(1,0),(2,0),(2,1)]

What can sequences do ?

Select

• i-th element: s[i]

• subsequence (“slice”): s[i:j]

Update -- For mutable sequences (e.g. Lists)

• Update i-th element: s[i] = e

• Update subsequence: s[i:j] = e

Member: x in s

Iteration: for x in s: <body>

map,filter,reduce

Comprehensions: [ex for x in s if cx]

Quicksort in Python

def sort(L):

if L==[]: return L

else:

l=sort(...)

r=sort(...)

return(l+L[0:1]+r)

Quicksort in Python

def sort(L):

if L==[]: return L

else:

l=sort([x for x in L[1:] if x < L[0]])

r=sort([x for x in L[1:] if x >= L[0]])

return(l+L[0:1]+r)

Today: Revisit some objects

• Exploit features and build powerful

expressions

Base: int, float, complex

Sequence: string, tuple, list

Maps (Dictionary): key → value

Key data structure: Dictionaries

Associative arrays, Hash tables …

A table storing a set of “keys”,

And a “value” for each key.

Any (immutable) object can be a key!

• int,float,string,tuples…

Very useful!

Using Dictionaries

Unsorted list of key,value pairs

Empty Dictionary: {}

Non-empty Dictionary: {k1:v1,k2:v2,…}

Membership: is k in dict: k in d

Lookup value of key: d[k]

Set value of key: d[k]=v

Dictionaries

>>> d={}

>>> d=dict(mexmenu)

>>> d[“ceviche”] = 3.95

>>> d

{…}

>>> d[“burrito”]

3.50

>>> d.keys()

…

>>> d.values()

Dictionaries
def freq(s):

d={}

for c in s:

if c in d: d[c]+=1

else: d[c]=1

return d

>>> d=plotfreq([1,1,3.0,”A”,3.0,”A”,”A”,1,2,3.0,1,”A”])

>>> d

…

>>> d = plotfreq(“avrakedavra”)

>>> d.keys()

>>> d

…

def plotfreq(s):

d=freq(s)

for k in d.keys():

print k, “*”*d[k]

You now know enough to do PA5

• Python Tutorial: How to open files, read lines

• Use the help command

• Document every function: What does it do ?

>>> f = open(“foo.txt”,”read”)

>>> f.readlines()

…

>>> for l in f.readlines():

<BODY>

>>> f.close

