
1

Deconstructing OCaml

What makes up a language

PL Dimensions

• Wide variety of programming languages

• How do they differ?

• along certain dimensions...

• What are these dimensions?

PL Dimensions (discussion) Dimension: Syntax

• Languages have different syntax

– But the difference in syntax can be

superficial

– C# and Java have different syntax, but are

very similar

• In this class, will look beyond superficial

syntax to understand the underlying

principles

Dimension: Computation model

• Functional: Lisp, OCaml, ML

• Imperative: Fortran, Pascal, C

• Object oriented: Smalltalk, C++, Java, C#

• Constraint-based: Prolog, CLP(R)

Dimension: Memory model

• Explicit allocation-deallocation: C, C++

• Garbage collection: Smalltalk, Java, C#

• Regions: safe versions of C (e.g. Cyclone)

– allocate in a region, deallocate entire region

at once

– more efficient than GC, but no dangling ptrs

2

Dimension: Typing model

• Statically typed: Java, C, C++, C#

• Dynamically typed: Lisp, Scheme, Perl,

Smalltalk

• Strongly typed (Java) vs. weakly typed

(C, C++)

Dimension: Execution model

• Compiled: C, C++

• Interpreted: Perl, shell scripting PLs

• Hybrid: Java

• Is this really a property of the language?

Or the language implementation?

• Depends...

Key components of a lang

• Computation model

• Typing model

• Memory model

Computation model

In OCaml In OCaml

• Expressions that evaluate to values

• Everything is an expression

– int, bool, real

– if-then-else

– let-in

– match

– fun x -> x+1

– e1 e2

• Functions are first class

3

In Java/Python In Java/Python

• Store and update commands

• Message sends

Types

Types

• Used to classify things created by the

programmer

• Classification used to check what can be

done with/to those things

In OCaml: Static typing

• Types are assigned statically at compile

time

• Without computing values

In OCaml: Static typing

• How can one reuse code for different

types?

– parametric types: ‘a * ‘b -> ‘b * ‘a

– implicit forall

• Type “discovered” (inferred)

automatically from code

– less burden on the programmer

4

In Python: Dynamic typing

• Types assigned to values/objects as they

are computed, ie: dynamically

• Before an operation is performed, check

that operands are compatible with

operation

In Python: Dynamic typing

• More programs are accepted by compiler

• More flexible, but find errors late

let x = if b then 1 else “abc”

let y = if b then x + 1 else x ^ “efg”

[1, “abc”, 1.8, [“efg”, 20]]

Dynamic vs. Static, OO vs. Func

Statically typed
Dynamically

typed

OO

Functional

Dynamic vs. Static, OO vs. Func

Statically typed
Dynamically

typed

OO Java
Python,

Smalltalk

Functional Ocaml, Haskell Lisp/Scheme

Memory/Data model

aka: what do variables refer to?

Data model in functional langs

• Environment of bindings (phonebook)

• Never change a binding

– add new bindings at the end of the

phonebook

5

Data model in functional langs

• Variables are names that refer into the
phonebook

• Most recent entry looked up during
evaluation

• Environment “frozen” inside function
value so that the behavior of the function
cannot be changed later on (easier
reasoning)

Data model in OO langs

• Variables are cells in memory

• Can change them by assigning into them

• Variables point to objects on the heap

• x = x + 10

Final words on functional

programming

What’s the point of all this?

Advantages of functional progs

• Functional programming more concise

“one line of lisp can replace 20 lines of C”
(quote from http://www.ddj.com/dept/architect/184414500?pgno=3)

• Recall reverse function in OCaml:

• How many lines in C, C++?

let reverse = fold (::) [];;

Can better reason about progs

• No side effects. Call a function twice

with same params, produces same value

• As a result, computations can be

reordered more easily

• They can also be parallelized more easily

http://www.ddj.com/dept/architect/184414500?pgno=3

6

So what?

• From the authors of map reduce:

“Inspired by similar primitives in LISP and

other languages”
http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0003.html

• The point is this: programmers who only

know Java/C/C++ would probably not

have come up with this idea

• Many other similar examples in industry

This stuff is for real: F#

F# = Microsoft’s Ocaml-on-steroids

http://channel9.msdn.com/pdc2008/TL11/

• Why FP is way cool

• How FP works with Objects (C#)

• How FP allows you to write parallel code

… all with an extremely engaging speaker

And: Jane Street Capital

• Trading company

• Software guides trading

• Use Ocaml exclusively because

– Ocaml brevity make code reviews easier

– Ocaml immutability makes code more

understandable

– Static typing prevents bugs

And many others!

• Facebook: Infer program analysis tool

implemented in Ocaml

• Facebook: Sigma malware detection tool

implemented in Haskell

• Google: map reduce, need we say more?

• Twitter: uses Scala for their back-end (Scala

has roots in FP and OO)

Stack Overflow Survey

cloud

cloud

https://insights.stackoverflow.com/survey/2016#technology-top-paying-tech

United States World

: functional or heavily influenced by functional

Top Paying by Language (self reported)

Remember

• The next time you use google, think of

how functional programming has inspired

some of the technical ideas behind their

engine

• And of course:

“Free your mind”

-Morpheus

7

Recap of the course so far

• 4 weeks of functional with Ocaml

• Next: 4 weeks of OO with Python

• After that: 1 week of constraint logic

programming with Prolog

OO at the highest level

• What is OO programming?

OO at the highest level

• What is OO programming?

• Answer:

– objects

– message sends

– dynamic dispatch

Just to whet your appetite

• Say we have objects, like cars, ducks,

pig, cell_phones

• Say we have a message name:
make_some_noise

Just to whet your appetite

• Each object has its own implementation for
make_some_noise: these are traditionally
called methods.

• car: vroom vroom, pig : oink oink, duck:
quack quack

• We can send make_some_noise to any object.
Depending on the actually run-time object,
we’ll get a different noise!

OO programming

• Message: the name of an operation

• Method: the implementation of an
operation

• Dynamic dispatch: the act of determining
at based on the dynamic type which
method should be run for a given
message send.

• These are the core ideas of OO

8

This brings us to Python...

• We’ll use Python as our vehicle for OO

programming

• Fun and useful language

• Let’s compare with OCaml along some of

the dimensions we saw last time

OCaml/Python comparison

ML Python

PL paradigm

Basic unit

Types

DataModel

OCaml/Python comparison

ML Python

PL paradigm functional OO/imperative

Basic unit Expr/value
Objects/

messages

Types statically dynamicaclly

DataModel env lookup
“pointers” to

mutable objs

Python

• Python has a very relaxed philosophy

– if something "can be done" then it is allowed.

• Combination of dynamic types +

everything is an object makes for very

flexible, very intuitive code.

No static types

• No static type system to "prohibit"

operations.

• No more of that OCaml compiler giving

you hard-to-decypher error messages!

• And... No need to formally define the

type system (although still need to define

the dynamic semantics somehow)

No static types: but what instead?

• Dynamic typing

• At runtime, every "operation" is

translated to a method call on the

appropriate object.

• If the object supports the method, then

the computation proceeds.

• Duck-typing: if it looks like a duck,

quacks like a duck, then it is a duck!

9

Dynamic typing

• This loose, comfortable, free-style,

philosophy is at the heart of python.

• But... beware, can get burned...

• One way to think about it:

– Dynamic types good for quick prototyping

– Static types good for large systems

– Although…

– Gmail in Javascript?

Similarities to Ocaml

• Uniform model: everything is an object,

including functions

• Can pass functions around just as with

objects

• Supports functional programming style

with map and fold

Other cool things about Python

• A lot of stuff that you may first think is a

"language feature" is actually just

translated under the hood to a method

call...

• Very widely used, supported.

• Has libraries for all sorts of things.

Ok, let’s start playing with Python!

• Like Perl, python is a "managed" or

"interpreted" language that runs under

the python environment, i.e. not

compiled to machine code.

• Makes it convenient to rapidly write and

test code!

Ways to run Python code

• At an interactive Python prompt: like

"read-eval-print" loop of ML,

• As shell scripts,

• As stand-alone programs run from the

shell.

Let’s fire it up!

• Ok, let’s give it a try...

• See py file for the rest...

