Polymorphism



Polymorphism

e Sub-type polymorphism

void f (Shape s)
- Can pass in any sub-type of Shape

e Parametric polymorphism
void proc elems (list[T])
- can pass in ANY T
- this is the kind in OCaml!



Other kinds of polymorphisms

e Bounded polymorphism

- Like parametric, except can provide a bound
void proc elems (list[T]) WHERE T <= Printable

- In Java syntax:
<T extends Printable> void p(list<T> 1) {...}



Other kinds of polymorphisms

e Bounded polymorphism

- Like parametric, except can provide a bound
void proc elems (list[T]) WHERE T <= Printable
- In Java syntax:

<T extends Printable> void p(list<T> 1) {...}
- Hey... isn’t this subtype polymorphism?

- Can’t | just do?

void proc elems (list[Printable])

- Yes, in this case, but on next slide...



Other kinds of polymorphisms

e Bounded polymorphism

- Say we have:
T print elem(T) WHERE T <= Printable

- and we have
e a Car car Which is printable, and
e a Shark shark which is printable



Other kinds of polymorphisms

e Bounded polymorphism

- Say we have:
T print elem(T) WHERE T <= Printable

- and we have
e a Car car Which is printable, and
e a Shark shark which is printable

- The following typechecks with bounded poly:
*print elem(car) .steering wheel
*print elem(shark) .teeth

- But not if we use subtype poly (ie: if
print elem returns Printable)



Other kinds of polymorphisms

e Bounded polymorphism

- Or as another example:
bool ShapeEq(T a, T b) WHERE T <= Shape

- Can call on

e (Rect, Rect)
e (Circle, Circle)

- But not (Rect, Circle)

- If we instead used Subtype poly would have:
bool ShapeEqg(Shape a, Spape b)

- And this would allow (Rect, Circle)



F-bounded polymorphism

« Comparable types and sort on them



F-bounded polymorphism

« Comparable types and sort on them
e One option:

interface Comparable { bool 1t (Object); }
void sort(list<Comparable> 1) { ... }

e But, this leads to several problems



F-bounded polymorphism

« Comparable types and sort on them

e One option:

interface Comparable { bool 1t (Object); }
void sort(list<Comparable> 1) { ... }

e But, this leads to several problems

(1) Everything is comparable to everything
- Leads to annoying instanceof tests in 1t
- Even if you have bool 1t (Comparable)
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F-bounded polymorphism

« Comparable types and sort on them

e One option:

interface Comparable { bool 1t (Object); }
void sort(list<Comparable> 1) { ... }

e But, this leads to several problems
(2) Can accidentally override the wrong 1t
- for example in Cat class, define 1t (Cat)
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F-bounded polymorphism

e Another option:

interface Comparable<T> { bool 1t(T); }
Class Dog extends Comparable<Dog> { bool 1t (Dog){.

-} 0}
Class Cat extends Comparable<Cat> { bool 1lt(Cat){..} 1}
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F-bounded polymorphism

e Another option:

interface Comparable<T> { bool 1t(T); }
Class Dog extends Comparable<Dog> { bool 1t (Dog){.
Class Cat extends Comparable<Cat> { bool 1lt(Cat){.

e But now what does sort take?

.
.
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F-bounded polymorphism

e Another option:

interface Comparable<T> { bool 1t(T); }
Class Dog extends Comparable<Dog> { bool 1t (Dog){.
Class Cat extends Comparable<Cat> { bool 1lt(Cat){.

 But now what does sort take?
- Easy but doesn’t quite work:

void sort(list<Comparable<Object> >1)

- F-bound:

void sort (list<T extends Comparable <T> > 1) {
. 1l.get(i).1t(1.get(j)

.
.



Summary of polymorphism

e Subtype

e Parametric

e Bounded

e F-bounded
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Back to OCaml

e Polymorphic types allow us to reuse code

 However, not always obvious from staring
at code

e But... Types never entered w/ program!
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Type inference

aka: how in the world does Ocaml
figure out all the types for me 7?2
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Inferring types

e Introduce unknown type vars

e Figure out equalities that must hold, and
solve these equalities

e Remaining types vars get a forall and thus
become the ‘a, ‘b, etc.
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Example 1
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Example 2




Example 2

let x = 2 + 3;;
let inc vy = x + vy;;
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Example 3




Example 3

let G%oo X ??
Z
let (y,z) = x 1in

@) z-vy;;
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Example 4
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ML doesn’t know what the function
does, or even that it terminates.

Exam ple 4 ML only knows its type!

)

let rec cat 1 =
match 1 with
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Example 5

let rec map £ 1 =
match 1 with

(] 7> L]
| h:@:t —>(f@h):@:(map f t)
@ T’w%’n”\n_%rm%mk
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Example 6




Example 6

V @ @
let compose (f,g) x = £ (g x)
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Example 7
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Example 7
®

let rec fold £ cur 1 =
match 1 with

@ [] -> cur ©)

| HQ:t -> fold £ (f h cur) t
© Teow = —\_é D T 2 Te > 7;4&(«&’
@ T(MA = T—@ocdn&k




