Polymorphism

Polymorphism

e Sub-type polymorphism

void f (Shape s)
- Can pass in any sub-type of Shape

e Parametric polymorphism
void proc elems (list[T])
- can pass in ANY T
- this is the kind in OCaml!

Other kinds of polymorphisms

e Bounded polymorphism

- Like parametric, except can provide a bound
void proc elems (list[T]) WHERE T <= Printable

- In Java syntax:
<T extends Printable> void p(list<T> 1) {...}

Other kinds of polymorphisms

e Bounded polymorphism

- Like parametric, except can provide a bound
void proc elems (list[T]) WHERE T <= Printable
- In Java syntax:

<T extends Printable> void p(list<T> 1) {...}
- Hey... isn’t this subtype polymorphism?

- Can’t | just do?

void proc elems (list[Printable])

- Yes, in this case, but on next slide...

Other kinds of polymorphisms

e Bounded polymorphism

- Say we have:
T print elem(T) WHERE T <= Printable

- and we have
e a Car car Which is printable, and
e a Shark shark which is printable

Other kinds of polymorphisms

e Bounded polymorphism

- Say we have:
T print elem(T) WHERE T <= Printable

- and we have
e a Car car Which is printable, and
e a Shark shark which is printable

- The following typechecks with bounded poly:
*print elem(car) .steering wheel
*print elem(shark) .teeth

- But not if we use subtype poly (ie: if
print elem returns Printable)

Other kinds of polymorphisms

e Bounded polymorphism

- Or as another example:
bool ShapeEq(T a, T b) WHERE T <= Shape

- Can call on

e (Rect, Rect)
e (Circle, Circle)

- But not (Rect, Circle)

- If we instead used Subtype poly would have:
bool ShapeEqg(Shape a, Spape b)

- And this would allow (Rect, Circle)

F-bounded polymorphism

« Comparable types and sort on them

F-bounded polymorphism

« Comparable types and sort on them
e One option:

interface Comparable { bool 1t (Object); }
void sort(list<Comparable> 1) { ... }

e But, this leads to several problems

F-bounded polymorphism

« Comparable types and sort on them

e One option:

interface Comparable { bool 1t (Object); }
void sort(list<Comparable> 1) { ... }

e But, this leads to several problems

(1) Everything is comparable to everything
- Leads to annoying instanceof tests in 1t
- Even if you have bool 1t (Comparable)

10

F-bounded polymorphism

« Comparable types and sort on them

e One option:

interface Comparable { bool 1t (Object); }
void sort(list<Comparable> 1) { ... }

e But, this leads to several problems
(2) Can accidentally override the wrong 1t
- for example in Cat class, define 1t (Cat)

11

F-bounded polymorphism

e Another option:

interface Comparable<T> { bool 1t(T); }
Class Dog extends Comparable<Dog> { bool 1t (Dog){.

-} 0}
Class Cat extends Comparable<Cat> { bool 1lt(Cat){..} 1}

12

F-bounded polymorphism

e Another option:

interface Comparable<T> { bool 1t(T); }
Class Dog extends Comparable<Dog> { bool 1t (Dog){.
Class Cat extends Comparable<Cat> { bool 1lt(Cat){.

e But now what does sort take?

.
.

13

F-bounded polymorphism

e Another option:

interface Comparable<T> { bool 1t(T); }
Class Dog extends Comparable<Dog> { bool 1t (Dog){.
Class Cat extends Comparable<Cat> { bool 1lt(Cat){.

 But now what does sort take?
- Easy but doesn’t quite work:

void sort(list<Comparable<Object> >1)

- F-bound:

void sort (list<T extends Comparable <T> > 1) {
. 1l.get(i).1t(1.get(j)

.
.

Summary of polymorphism

e Subtype

e Parametric

e Bounded

e F-bounded

15

Back to OCaml

e Polymorphic types allow us to reuse code

 However, not always obvious from staring
at code

e But... Types never entered w/ program!

16

Type inference

aka: how in the world does Ocaml
figure out all the types for me 7?2

17

Inferring types

e Introduce unknown type vars

e Figure out equalities that must hold, and
solve these equalities

e Remaining types vars get a forall and thus
become the ‘a, ‘b, etc.

18

Example 1

19

Example 2

Example 2

let x = 2 + 3;;
let inc vy = x + vy;;

l\ L= Mﬁ")"“x

[ime= [— lM—
T4 = k% R p
For QN\ el eq.m/g 0/\8 x/\:“,\% — - A,\,\/{' / ,n o oA

K
T

b and

21

Example 3

Example 3

let G%oo X ??
Z
let (y,z) = x 1in

@) z-vy;;

O Tx
@Tgo = T _5TM79/)WW° indx il =
@T—x: [z Tz
BT = ibnink =il
T, < b
ek

Example 4

24

ML doesn’t know what the function
does, or even that it terminates.

Exam ple 4 ML only knows its type!

)

let rec cat 1 =
match 1 with

[] _> \\ 77 6)
I@h::t -> h” (cat t) , y
— T <Mema b
0Tkt = To = Tk — 71(;2—\—\)\ “—(IZ;(:;I{;‘;M{?
O T. = 'ax labd—> 'alk
L —
'\—IC-:. Tﬁ\ W) —_
@ T, = Mumg % W’\"’\'a N ' "‘V{— - M’:’”“J
ey % WAy S| | 5
W Tt Tk \ T caluny

Example 5

Example 5

let rec map £ 1 =
match 1 with

(] 7> L]
| h:@:t —>(f@h):@:(map f t)
@ T’w%’n”\n_%rm%mk

@ T.= 'a+'otd’albd TazTn
o ¢

To Te=To bk Tq‘:TkM('
@ T{T: TL~>> H“’*’

O Topur > Tput Wk T
Toap = (T = Tyur) = To Wb = Tpat WL
ba ~'4)~> o s > 6wk

27

Example 6

Example 6

V @ @
let compose (f,g) x = £ (g x)

@ —ICom’\= T}*Tg-an_bn%w
@ '\6' = Tca‘lct' %Tgmr%
%

@ Tx) Tc‘)ut

T—cw'\ = Q_cqu = TCW‘M") X (Tx — Tg«l‘) ~ Tx > Tompt
(o \%’b>*'(lcﬁ5la> - ¢ >

-—
—

29

Example 7

30

Example 7
®

let rec fold £ cur 1 =
match 1 with

@ [] -> cur ©)

| HQ:t -> fold £ (f h cur) t
© Teow = —_é D T 2 Te > 7;4&(«&’
@ T(MA = T—@ocdn&k

