
1

1

Polymorphism

2

Polymorphism

• Sub-type polymorphism
void f(Shape s)

– Can pass in any sub-type of Shape

• Parametric polymorphism

void proc_elems(list[T])

– can pass in ANY T

– this is the kind in OCaml!

3

Other kinds of polymorphisms

• Bounded polymorphism

– Like parametric, except can provide a bound

void proc_elems(list[T]) WHERE T <= Printable

– In Java syntax:

<T extends Printable> void p(list<T> l) {...}

4

Other kinds of polymorphisms

• Bounded polymorphism

– Like parametric, except can provide a bound

void proc_elems(list[T]) WHERE T <= Printable

– In Java syntax:

<T extends Printable> void p(list<T> l) {...}

– Hey... isn’t this subtype polymorphism?

– Can’t I just do?

void proc_elems(list[Printable])

– Yes, in this case, but on next slide...

5

Other kinds of polymorphisms

• Bounded polymorphism

– Say we have:

T print_elem(T) WHERE T <= Printable

– and we have

• a Car car which is printable, and

• a Shark shark which is printable

6

Other kinds of polymorphisms

• Bounded polymorphism

– Say we have:

T print_elem(T) WHERE T <= Printable

– and we have

• a Car car which is printable, and

• a Shark shark which is printable

– The following typechecks with bounded poly:

•print_elem(car).steering_wheel

•print_elem(shark).teeth

– But not if we use subtype poly (ie: if 
print_elem returns Printable)



2

7

Other kinds of polymorphisms

• Bounded polymorphism

– Or as another example:

bool ShapeEq(T a, T b) WHERE T <= Shape

– Can call on 

•(Rect, Rect)

•(Circle, Circle) 

– But not (Rect, Circle)

– If we instead used Subtype poly would have:

bool ShapeEq(Shape a, Spape b)

– And this would allow (Rect, Circle)

F-bounded polymorphism

8

• Comparable types and sort on them

F-bounded polymorphism

9

• Comparable types and sort on them

• One option:

• But, this leads to several problems

interface Comparable { bool lt(Object); }

void sort(list<Comparable> l) { ... }

F-bounded polymorphism

10

• Comparable types and sort on them

• One option:

• But, this leads to several problems

(1) Everything is comparable to everything

– Leads to annoying instanceof tests in lt

– Even if you have bool lt(Comparable)

interface Comparable { bool lt(Object); }

void sort(list<Comparable> l) { ... }

F-bounded polymorphism

11

• Comparable types and sort on them

• One option:

• But, this leads to several problems

(2) Can accidentally override the wrong lt

– for example in Cat class, define lt(Cat)

interface Comparable { bool lt(Object); }

void sort(list<Comparable> l) { ... }

F-bounded polymorphism

12

• Another option:
interface Comparable<T> { bool lt(T); }

Class Dog extends Comparable<Dog> { bool lt(Dog){..} }

Class Cat extends Comparable<Cat> { bool lt(Cat){..} }



3

F-bounded polymorphism

13

• Another option:

• But now what does sort take?

interface Comparable<T> { bool lt(T); }

Class Dog extends Comparable<Dog> { bool lt(Dog){..} }

Class Cat extends Comparable<Cat> { bool lt(Cat){..} }

F-bounded polymorphism

14

• Another option:

• But now what does sort take?

– Easy but doesn’t quite work:

– F-bound:

interface Comparable<T> { bool lt(T); }

Class Dog extends Comparable<Dog> { bool lt(Dog){..} }

Class Cat extends Comparable<Cat> { bool lt(Cat){..} }

void sort(list<Comparable<Object> >l)

void sort(list<T extends Comparable <T> > l) {

... l.get(i).lt(l.get(j) ...

}

15

Summary of polymorphism

• Subtype

• Parametric

• Bounded

• F-bounded

16

Back to OCaml

• Polymorphic types allow us to reuse code

• However, not always obvious from staring 

at code

• But... Types never entered w/ program!

17

Type inference

aka: how in the world does Ocaml 

figure out all the types for me ???

18

Inferring types

• Introduce unknown type vars

• Figure out equalities that must hold, and 

solve these equalities

• Remaining types vars get a forall and thus 

become the ‘a, ‘b, etc.



4

19

Example 1

let x = 2 + 3;;

let y = string_of_int x;;

20

Example 2

let x = 2 + 3;;

let inc y = x + y;;

21

Example 2

let x = 2 + 3;;

let inc y = x + y;;

22

Example 3

let foo x =

let (y,z) = x in

z-y;;

23

Example 3

let foo x =

let (y,z) = x in

z-y;;

24

Example 4

let rec cat l = 

match l with

[] -> “”

| h::t -> h^(cat t)



5

25

Example 4

let rec cat l = 

match l with

[] -> “”

| h::t -> h^(cat t)

ML doesn’t know what the function 

does, or even that it terminates. 

ML only knows its type! 

26

Example 5

let rec map f l = 
match l with
[] -> []
| h::t ->(f h)::(map f t)

27

Example 5

let rec map f l = 
match l with
[] -> []
| h::t ->(f h)::(map f t)

28

Example 6

let compose (f,g) x = f (g x)

29

Example 6

let compose (f,g) x = f (g x)

30

Example 7

let rec fold f cur l =

match l with

[] -> cur

| h::t -> fold f (f h cur) t



6

31

Example 7

let rec fold f cur l =

match l with

[] -> cur

| h::t -> fold f (f h cur) t


