
Programming Languages

Datatypes

Expressions Values

Types

Many kinds of expressions:

1. Simple

2. Variables

3. Functions

Review so far

Review so far

• We’ve seen some base types and values:
– Integers, Floats, Bool, String etc.

• Some ways to build up types:
– Products (tuples), records, “lists”

– Functions

• Design Principle: Orthogonality
– Don’t clutter core language with stuff

– Few, powerful orthogonal building techniques

– Put “derived” types, values, functions in libraries

Next: Building datatypes

Three key ways to build complex types/values

1. “Each-of” types

Value of T contains value of T1 and a value of T2

2. “One-of” types

Value of T contains value of T1 or a value of T2

3. “Recursive”

Value of T contains (sub)-value of same type T

Next: Building datatypes

Three key ways to build complex types/values

1. “Each-of” types (T1 * T2)

Value of T contains value of T1 and a value of T2

2. “One-of” types

Value of T contains value of T1 or a value of T2

3. “Recursive”

Value of T contains (sub)-value of same type T

Suppose I wanted …
… a program that processed lists of attributes

• Name (string)

• Age (integer)

• …

Suppose I wanted …
… a program that processed lists of attributes

• Name (string)

• Age (integer)

• DOB (int-int-int)

• Address (string)

• Height (float)

• Alive (boolean)

• Phone (int-int)

• email (string)

Many kinds of attributes (too many to put in a record)

• can have multiple names, addresses, phones, emails etc.

Want to store them in a list. Can I ?

Constructing Datatypes

t is a new datatype.

A value of type t is either:

a value of type t1 placed in a box labeled C1

Or a value of type t2 placed in a box labeled C2

Or …

Or a value of type tn placed in a box labeled Cn

type t = C1 of t1 | C2 of t2 | … | Cn of tn

Constructing Datatypes

type t = C1 of t1 | C2 of t2 | … | Cn of tn

Value:t1

Label=C1

OR
Value:t2

Label=C2

OR
Value:tn

Label=Cn

All have the type t

t

Suppose I wanted …

Attributes:

• Name (string)

• Age (integer)

• DOB (int-int-int)

• Address (string)

• Height (real)

• Alive (boolean)

• Phone (int-int)

• email (string)

type attrib =

Name of string

| Age of int

| DOB of int*int*int

| Address of string

| Height of float

| Alive of bool

| Phone of int*int

| Email of string;;

How to PUT values into box?

How to PUT values into box?

How to create values of type attrib ?

type attrib =

Name of string

| Age of int

| DOB of int*int*int

| Address of string

| Height of float

| Alive of bool

| Phone of int*int

| Email of string;;

let a1 = Name “Bob”;;

val x : attrib = Name “Bob”

let a2 = Height 5.83;;

val a2 : attrib = Height 5.83

let year = 1977 ;;

val year : int = 1977

let a3 = DOB (9,8,year) ;;

val a3 : attrib = DOB (9,8,1977)

let a_l = [a1;a2;a3];;

val a3 : attrib list = …

Constructing Datatypes

“Bob”

Name

OR
34

Age

OR
(9,8,77)

DOB

type attrib

= Name of string | Age of int | DOB of int*int*int

| Address of string | Height of float | Alive of bool

| Phone of int*int | Email of string;;

All have type attrib

Name “Bob” Age 34 DOB (9,8,77)

One-of types

• We’ve defined a “one-of” type named attrib

• Elements are one of:

– string,

– int,

– int*int*int,

– float,

– bool …

• Can create uniform attrib lists

• Say I want a function to print attribs…

datatype attrib =

Name of string

| Age of int

| DOB of int*int*int

| Address of string

| Height of real

| Alive of bool

| Phone of int*int

| Email of string;

How to TEST & TAKE whats in box?

Is it a ...
string?

or an
int?

or an
int*int*int?

or ...

How to TEST & TAKE whats in box?

Look at TAG!

How to tell whats in the box ?
match e with

| Name s -> printf "%s" s

| Age i -> printf "%d" i

| DOB(d,m,y) -> printf "%d/%d/%d" d m y

| Address s -> printf "%s" s

| Height h -> printf "%f" h

| Alive b -> printf "%b" b s

| Phone(a,r) -> printf "(%d)-%d" a r

Pattern-match expression: check if e is of the form …

• On match:

– value in box bound to pattern variable

– matching result expression is evaluated

• Simultaneously test and extract contents of box

How to tell whats in the box ?

type attrib =

Name of string

| Age of int

| DOB of int*int*int

| Address of string

| Height of float

| Alive of bool

| Phone of int*int

Pattern-match expression: check if e is of the form …

• On match:

– value in box bound to pattern variable

– matching result expression is evaluated

• Simultaneously test and extract contents of box

match e with

| Name s -> ...(*s: string *)

| Age i -> ...(*i: int *)

| DOB(d,m,y)-> ...(*d: int,m: int,y: int*)

| Address a -> ...(*a: string*)

| Height h -> ...(*h: int *)

| Alive b -> ...(*b: bool*)

| Phone(a,r)-> ...(*a: int, r: int*)

How to tell whats in the box

None of the cases matched the tag (Name)

Causes nasty Run-Time Error

match (Name “Bob”) with
| Name s -> printf "Hello %s\n" s
| Age i -> printf "%d years old" i
;;

Hello Bob
- : unit = ()

How to TEST & TAKE whats in box?

BEWARE!!

Be sure to

handle all

TAGS!

Beware! Handle All TAGS!

None of the cases matched the tag (Name)

Causes nasty Run-Time Error

match (Name “Bob”) with
| Age i -> Printf.printf "%d" I
| Email s -> Printf.printf "%s" s

;;
Exception: Match Failure!!

Compiler to the Rescue!

None of the cases matched the tag (Name)

Causes nasty Run-Time Error

match (Name “Bob”) with
| Age i -> Printf.printf "%d" I
| Email s -> Printf.printf "%s" s

;;
Exception: Match Failure!!

Compiler To The Rescue!!

Compile-time checks for:

missed cases: ML warns if you miss a case!

let printAttrib a = match a with
| Name s -> Printf.printf "%s" s
| Age i -> Printf.printf "%d" I
| DOB (d,m,y) -> Printf.printf "%d / %d / %d" d m y
| Address addr -> Printf.printf "%s" addr
| Height h -> Printf.printf "%f" h
| Alive b -> Printf.printf "%b" b
| Email e -> Printf.printf "%s" e

;;

Warning P: this pattern-matching is not exhaustive.Here is
an example of a value that is not matched:Phone (_, _)

Compiler To The Rescue!!

Compile-time checks for:

redundant cases: ML warns if a case never matches

let printAttrib a = match a with
| Name s -> Printf.printf "%s" s
| Age i -> Printf.printf "%d" I
| DOB (d,m,y) -> Printf.printf "%d / %d / %d" d m y
...
| Age i -> Printf.printf "%d" i ;;

Warning U: this match case is unused.

Another Few Examples

See code text file

let printAttrib a = match a with
| Name s -> Printf.printf "%s" s
| Age i -> Printf.printf "%d" I
| DOB (d,m,y) -> Printf.printf "%d / %d / %d" d m y
...
| Age i -> Printf.printf "%d" i ;;

Warning U: this match case is unused.

match-with is an Expression

match e with

C1 x1 -> e1

| C2 x2 -> e2

| …

| Cn xn -> en

Type Rule

• e1, e2,…,en must have same type T

• Type of whole expression is T

match e with

Name s -> e1

| Age i -> e2

| DOB (m,d,y) -> e3

| Address a -> e4

| Height h -> e5

| Alive b -> e6

| Phone (a,n) -> e7

| Email e -> e8

T

T

Type Rule

• e1, e2,…,en must have same type T

• Type of whole expression is T

match-with is an Expression

Benefits of match-with

1. Simultaneous test-extract-bind

2. Compile-time checks for:

missed cases: ML warns if you miss a t value

redundant cases: ML warns if a case never matches

type t =

C1 of t1

| C2 of t2

| …

| Cn of tn

match e with

C1 x1 -> e1

| C2 x2 -> e2

| …

| Cn xn -> en

Next: Building datatypes

Three key ways to build complex types/values

1. “Each-of” types t1 * t2

Value of T contains value of T1 and a value of T2

2. “One-of” types type t = C1 of t1 | C2 of t2

Value of T contains value of T1 or a value of T2

3. “Recursive” type

Value of T contains (sub)-value of same type T

“Recursive” types

type nat = Zero | Succ of nat

“Recursive” types

type nat = Zero | Succ of nat

Wait a minute! Zero of what ?!

“Recursive” types

type nat = Zero | Succ of nat

Wait a minute! Zero of what ?!

Relax.

Means “empty box with label Zero”

“Recursive” types

type nat = Zero | Succ of nat

What are values of nat ?

“Recursive” types

type nat = Zero | Succ of nat

Zero

What are values of nat ?

“Recursive” types

type nat = Zero | Succ of nat

Zero

Succ

What are values of nat ?

One nat contains another!

“Recursive” types

type nat = Zero | Succ of nat

Zero

Succ

Succ

What are values of nat ?

One nat contains another!

“Recursive” types

type nat = Zero | Succ of nat

Zero

Succ

Succ

Succ

What are values of nat ?

One nat contains another!

“Recursive” types

What are values of nat ?

type nat = Zero | Succ of nat

Zero

Succ

Succ

Succ

One nat contains another!

nat = recursive type

Next: Building datatypes

Three key ways to build complex types/values

1. “Each-of” types t1 * t2

Value of T contains value of T1 and a value of T2

2. “One-of” types type t = C1 of t1 | C2 of t2

Value of T contains value of T1 or a value of T2

3. “Recursive” type type t = ...| C of (...*t)

Value of T contains (sub)-value of same type T

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Next: Lets get cosy with Recursion

Code Structure = Type Structure!!!

to_int : nat -> int

let rec to_int n =

type nat =

| Zero

| Succ of nat

to_int : nat -> int

let rec to_int n =

type nat =

| Zero

| Succ of nat

Base pattern

Inductive pattern

to_int : nat -> int

let rec to_int n = match n with

| Zero -> 0

| Succ m -> 1 + to_int m

type nat =

| Zero

| Succ of nat

Base pattern

Inductive pattern

Base Expression

Inductive Expression

Base pattern

Inductive pattern

of_int : int -> nat

let rec of_int n =

type nat =

| Zero

| Succ of nat

of_int : int -> nat

let rec of_int n =

type nat =

| Zero

| Succ of nat

Base pattern

Inductive pattern

of_int : int -> nat

let rec of_int n =

if n <= 0 then

else

type nat =

| Zero

| Succ of nat

Base pattern

Inductive pattern

Base pattern

Inductive pattern

of_int : int -> nat

let rec of_int n =

if n <= 0 then

Zero

else

Succ (of_int (n-1))

type nat =

| Zero

| Succ of nat

Base pattern

Inductive pattern

Base Expression

Inductive Expression

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec plus n m =

plus : nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec plus n m =

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec plus n m =

match m with

| Zero ->

| Succ m’ ->

Base pattern

Inductive pattern

Base pattern

Inductive pattern

plus : nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec plus n m =

match m with

| Zero -> n

| Succ m’ -> Succ (plus n m’)

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec times n m =

times: nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec times n m =

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec times n m =

match m with

| Zero ->

| Succ m’ ->

Base pattern

Inductive pattern

Base pattern

Inductive pattern

times: nat*nat -> nat

type nat =

| Zero

| Succ of nat

let rec times n m =

match m with

| Zero -> Zero

| Succ m’ -> plus n (times n m’)

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Base pattern

Inductive pattern

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Lists are recursive types!

Think about this! What are values of int_list ?

type int_list =

Nil

| Cons of int * int_list

NilCons(3,Nil)Cons(2,Cons(3,Nil))Cons(1,Cons(2,Cons(3,Nil)))

Nil
Cons

3,
Cons

2,
Cons

1,

Lists aren’t built-in !

Lists are a derived type: built using elegant core!

1. Each-of

2. One-of

3. Recursive

:: is just a pretty way to say “Cons”

[] is just a pretty way to say “Nil”

datatype int_list =

Nil

| Cons of int * int_list

Some functions on Lists : Length

let rec len l =

match l with

| Nil -> 0

| Cons(h,t) -> 1 + (len t)

let rec len l =

match l with

| Nil -> 0

| Cons(_,t) -> 1 + (len t)

let rec len l =

match l with

| Cons(_,t) -> 1 + (len t)

| _ -> 0

No binding for head Pattern-matching in order

Base pattern

Inductive pattern

Base Expression

Inductive Expression

Some functions on Lists : Append

let rec append (l1,l2) =

• Find the right induction strategy

– Base case: pattern + expression

– Induction case: pattern + expression

Well designed datatype gives strategy

Some functions on Lists : Max

let rec max xs =

• Find the right induction strategy

– Base case: pattern + expression

– Induction case: pattern + expression

Well designed datatype gives strategy

null, hd, tl are all functions …

Bad ML style: More than aesthetics !

Pattern-matching better than test-extract:

• ML checks all cases covered

• ML checks no redundant cases

• …at compile-time:

– fewer errors (crashes) during execution

– get the bugs out ASAP!

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

Representing Trees

1 2 3

Leaf

1

Node(Node(Leaf 1, Leaf 2), Leaf 3)

Representing Trees

Leaf

2

Node(Node(Leaf 1, Leaf 2), Leaf 3)

1 2 3

Representing Trees

Leaf

1

Node

Leaf

2

Node(Node(Leaf 1, Leaf 2), Leaf 3)

1 2 3

Representing Trees

Leaf

3

Node(Node(Leaf 1, Leaf 2), Leaf 3)

1 2 3

Representing Trees

Leaf

1

Leaf

3

Node

Node

Leaf

2

Node(Node(Leaf 1, Leaf 2), Leaf 3)

1 2 3

Next: Lets get cosy with Recursion

Recursive Code Mirrors Recursive Data

sum_leaf: tree -> int

“Sum up the leaf values”. E.g.

let t0 = Node(Node(Leaf 1, Leaf 2), Leaf 3);;

- : int = 6

sum_leaf: tree -> int

let rec sum_leaf t =

sum_leaf: tree -> int

let rec sum_leaf t =

Base pattern

Inductive pattern

sum_leaf: tree -> int

let rec sum_leaf t =

match t with

|Leaf n ->

|Node(t1,t2)->

Base pattern

Inductive pattern

Base pattern

Inductive pattern

sum_leaf: tree -> int

let rec sum_leaf t =

match t with

|Leaf n -> n

|Node(t1,t2)-> sum_leaf t1 + sum_leaf t2

Base Expression

Inductive Expression

Base pattern

Inductive pattern

Base pattern

Inductive pattern

Recursive Code Mirrors Recursive Data

Code almost writes itself!

Another Example: Calculator
Want an arithmetic calculator to evaluate expressions

like:

• 4.0 + 2.9

• 3.78 – 5.92

• (4.0 + 2.9) * (3.78 -5.92)

Another Example: Calculator
Want an arithmetic calculator to evaluate expressions

like:

• 4.0 + 2.9 ====> 6.9

• 3.78 – 5.92 ====> -2.14

• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML TYPE for REPRESENTING expressions ?

Another Example: Calculator

type expr =

| Num of float

| Add of expr*expr

| Sub of expr*expr

| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:

• 4.0 + 2.9 ====> 6.9

• 3.78 – 5.92 ====> -2.14

• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML TYPE for REPRESENTING expressions ?

Another Example: Calculator

type expr =

| Num of float

| Add of expr*expr

| Sub of expr*expr

| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:

• 4.0 + 2.9 ====> 6.9

• 3.78 – 5.92 ====> -2.14

• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

Another Example: Calculator

type expr =

| Num of float

| Add of expr*expr

| Sub of expr*expr

| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:

• 4.0 + 2.9 ====> 6.9

• 3.78 – 5.92 ====> -2.14

• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

let rec eval e = match e with

|Num f ->

|Add(e1,e2)->

|Sub(e1,e2)->

|Mul(e1,e2)->

Another Example: Calculator

type expr =

| Num of float

| Add of expr*expr

| Sub of expr*expr

| Mul of expr*expr

Want an arithmetic calculator to evaluate expressions like:

• 4.0 + 2.9 ====> 6.9

• 3.78 – 5.92 ====> -2.14

• (4.0 + 2.9) * (3.78 -5.92) ====> -14.766

Whats a ML FUNCTION for EVALUATING expressions ?

let rec eval e = match e with

|Num f -> f

|Add(e1,e2)-> eval e1 +. eval e2

|Sub(e1,e2)-> eval e1 -. eval e2

|Mul(e1,e2)-> eval e1 *. eval e2

Random Art from Expressions
PA #2

Build more funky expressions, evaluate them, to produce:

