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Abstract—Unsafe behavior of hybrid systems can have disas-
trous consequences, motivating the need for formal verification of
the software running on these systems. Foundational verification
in a proof assistant such as Coq is a promising technique that
can provide extremely strong, foundational, guarantees about
software systems. In this paper, we show how to apply this
technique to hybrid systems. We define a TLA-inspired formalism
in Coq for reasoning about hybrid systems and use it to verify
two quadcopter modules: the first limits the quadcopter’s velocity
and the second limits its altitude. We ran both of these modules
on an actual quadcopter, and they worked as intended. We
also discuss lessons learned from our experience foundationally
verifying hybrid systems.

I. INTRODUCTION

From 400-seat commercial airplanes to miniature hobbyist
quadcopters, hybrid systems surround us. While this opens up
exciting possibilities, it also presents enormous risks. Unsafe
behavior of a hybrid system can have consequences ranging
from the loss of costly equipment to the loss of human life.
The software running on hybrid systems offers the potential
to prevent dangerous behaviors; for example, an aircraft can
have a software module that intervenes if the pilot attempts to
perform an unsafe maneuver. However, since it performs such
a critical function, it is important to guarantee that this software
is correct. Formal verification can provide such a guarantee.

Foundational verification is a particular kind of verifi-
cation technique that has shown increasing promise in the
past decade [1]. In this technique, the programmer writes
programs in a proof assistant such as Coq [2], and then
interactively proves these programs correct. The main benefit
of foundational verification is that it provides a highly-detailed
correctness proof that can be checked using a very small,
trusted, proof checker. Experimental studies have shown that
foundationally verified software is far more reliable than
software written in a traditional way [3]. While there has been
a tremendous amount of work on formal verification of hybrid
systems [4]–[6], there has been less work on foundational
verification of hybrid systems [7]–[9].

In this paper, we show how to apply deductive, foun-
dational verification to hybrid systems. Broadly speaking,
foundational verification is challenging because it requires all
details to be worked out in full detail. Often, formalizing
systems at this level of detail uncovers subtleties and mistakes
that are difficult to see otherwise. Throughout the paper we will
present examples of this kind of subtlety that we uncovered in
developing our work.

In our work we define a TLA1-inspired formalism for
reasoning about hybrid systems in Coq [2]. Our formalism
allows us to express both hybrid systems and properties of
these systems in a uniform way, as well as to use logical
rules to prove the stated properties. We use our formalism
to implement and verify two quadcoptor modules: the first
limits the velocity of the quadcopter, and the second limits
its height. These modules can be added to any controller as
a small runtime monitor, or shim, between the controller and
the motors. These shims adjust the values sent to the motors
to make sure that certain safety properties are preserved. In
addition to verifying our shims, we also ran them on a flying
Iris+ quadcopter, and both shims worked as intended.

In summary, our contributions are the following:

• We demonstrate techniques for performing founda-
tional verification of hybrid systems in Coq. We
provide an overview of our approach (Section II),
followed by a more formal description of the logic
(Section III).

• We use our approach to implement and verify two
shims (Section II), which we installed and flew on a
real quadcopter (Section IV). The full development is
part of the VeriDrone project, available at http://goto.
ucsd.edu/veridrone/.

• We discuss lessons learned from our development
(Section V), which we hope will help and guide future
research in this direction.

II. VERIFYING SHIMS

We start by giving an overview of how to apply our tech-
niques to verify shims from the domain of Unmanned Aerial
Vehicles (UAVs). For instance, we might want a guarantee
that the software running on a UAV prevents it from climbing
more than 400 feet above the ground (and thus violating FAA
regulations). However, we would like to accomplish this while
allowing the UAV to run complex controllers that may not
guarantee these properties.

We accomplish this by implementing and verifying a
simple safety shim, which runs after all of the (potentially
complex) controllers have run, but before any signals are sent
to the motors. This shim performs a safety check on the
outputs from the higher level controllers. In our height shim
example, the shim checks whether the output of the higher
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Fig. 1. A simplified depiction of UAV architecture (a) without and (b) with
our shim.

level controllers would put the UAV in a state in which it could
not stop before exceeding the upper bound. If the check passes
then the shim issues exactly the same outputs as the higher
level controllers. Otherwise, the shim issues a conservative
action to ensure the desired safety property.

Our architecture, inspired by the simplex architecture [11],
is depicted in Figure 1. This architecture allows us to focus
our verification effort on the safety critical shim, without
needing to reason about complex existing controllers. This
design makes the verification tractable, while retaining the
benefits of state-of-the art controllers.

Our verification of hybrid systems in Coq is built on top of
a discrete-time linear temporal logic (called RTLA) inspired by
Lamport’s Temporal Logic of Actions (TLA) [10], a formalism
of temporal logic designed with refinement in mind. Sec-
tion II-A contains a brief overview of RTLA. Next we describe
our Sys abstraction for modeling hybrid systems in RTLA
(Section II-B). We then demonstrate how we specify, verify,
and compose several hybrid systems using our abstraction.

A. Background: TLA

RTLA formulas specify traces (discrete sequences of states)
allowed by a system. We briefly illustrate RTLA through the
following example which specifies a system that repeatedly
increments the variable x by 1:

x = 0 ∧�(x′ = x+ 1)

The initial condition, x = 0, is called a state formula and char-
acterizes all possible initial states of the system, stating that
x must be 0 in those states. This initial condition corresponds
to an infinite number of states since all other variables, e.g. y
and z, are unconstrained.

The second part of the above RTLA formula describes how
the system evolves. The expression between the parentheses
is an action formula specifying the relationship between two
temporally adjacent states. In RTLA, x′ denotes the value of
x in the next state. Thus, the formula states that the value
of x in the next state is 1 greater than in the previous state.
This relation about two adjacent states is lifted to a statement
about traces (sequences of states) by the “always” operator
(�), which states that all future temporally adjacent pairs of
states are related by the given action formula.

Note that RTLA is a discrete-time temporal logic; there
are no continuous evolutions in RTLA traces. When specifying
hybrid systems, which contain continuous evolutions, an RTLA

formula characterizes all possible sequences of samplings of
the system state. We further discuss and justify this specifica-
tion in Section III-B.

B. Our Hybrid System Model

We now turn to our Sys abstraction for describing hybrid
systems. Sys takes 4 parameters:

Sys I (W, C) D ∆

where the parameters are as follows:

I an RTLA state formula describing the initial
condition

(W, C) a pair describing the continuous dynamics of the
world. W is a set of differential (in)equations,
and C is an RTLA action formula stating addi-
tional constraints about how the world evolves.

D an action formula specifying the discrete
controller

∆ a constant giving the maximum time between two
executions of the discrete controller

Sys I (W, C) D ∆ unfolds to an RTLA formula, but
we leave the full details of this formula to Section III-B.
Informally, for now, Sys is defined in such a way that the
system starts in a state satisfying I and can repeatedly take
either of two kinds of transitions: an instantaneous transition
of the discrete program (D); or a continuous evolution of the
physical world described by W under the constraints in C.

We now show how Sys can express a shim that ensures the
velocity of a simple one-dimensional model of a quadcopter
never exceeds a constant upper bound vub. Our shim makes use
of the following variables (by convention, lower case variables
are continuous and upper case variables are discrete): v is
the actual velocity of the system, whose behavior will be
specified by differential equations encoding the physics of the
real world; vmax is an upper bound on v (e.g. produced by a
sensor) and is an input to our shim; T? is the thrust requested
by the higher level controller, which is also an input to our
shim; T is the thrust produced by our shim, which gets sent
to the motors. Our shim is defined as follows:

VelShim ≡ Sys I (W, C) D ∆

where

I ≡ max(0, T − g) ·∆ + v ≤ vub
W ≡ v̇ ≤ T − g
C ≡ True
D ≡ ((T? − g) ·∆ + vmax ≤ vub ∧ T ′=T?) ∨ T ′=g

I states that the velocity is at most vub and furthermore is
small enough that it will still be at most vub when the shim
first runs (which will be at most ∆ time units away). W states
the differential inequality capturing how velocity is related to
thrust (T ) and gravity (g). This relationship is an inequality
rather than an equality because we are modeling a quadcopter,
whose vertical thrust is only upper-bounded by the thrust pro-
duced by the motors. We discuss this further in Section IV. The
RTLA action formula D captures the control logic of our shim.
The disjunction encodes, essentially, the following conditional
statement: ifT?·∆+vmax ≤ vub thenT ′ = T? elseT ′ = g;



though it also allows executing the safe action (T ′ = g) when
the check succeeds.

Since Sys unfolds directly to an RTLA formula, we can
express the correctness of our shim directly in RTLA as
follows (where ` represents entailment in RTLA, expressing
that the formula to the right of the ` holds on all traces
satisfying the formula to the left of the `):

�v ≤ vmax ` VelShim→ �v ≤ vub (1)

This formula states that if vmax is always an upper bound
on the actual velocity (�v ≤ vmax ), then the velocity shim
ensures that the velocity of the system is always less than or
equal to vub. For now, we do not specify how the value of
vmax is produced; that is, vmax does not appear in any action
formulas (transitions). Instead, we simply assume that such a
value is provided to the shim. In Section II-D, we will show
how to specify systems that produce a vmax satisfying this
assumption and we will show how to compose them with the
velocity shim.

C. Verifying the Velocity Shim

We now show how we prove the above RTLA formula in
Coq. To do so, we need an inductive invariant that is preserved
both by the continuous transitions (those of the world) and
the discrete program. Although we have implemented several
mechanisms for simplifying reasoning about Sys, we currently
do not infer invariants automatically. To express our invariant,
we need a way to track the maximum amount of time that can
elapse before the next execution of the discrete program. This
value is tracked by the τ variable. Using τ , we can express
the inductive invariant as follows:

max(0, T − g) ∗ τ + v ≤ vub

In order to prove that this formula is an inductive invariant,
we use the the SYSIND proof rule (in Figure 2), which is
a special case of discrete induction tailored to systems that
are described by our Sys construct. Proof rules such as this
one allow us to abstract the implementation of Sys and make
for overall cleaner proofs. Informally, SYSIND states that a
formula P is an (inductive) invariant of a system if P holds
on all possible initial states of the system, and P is preserved
by the two possible transitions that the system can make. We
use P ′ to denote the formula P with all unprimed variables
x replaced with their primed counterpart x′. We use free to
informally denote a function that takes an RTLA formula and
returns the free variables of the formula, and we use nonzero to
denote a function that takes a list of differential equations and
returns a list of variables with non-zero derivatives (i.e. the
continuous variables). In the actual formalism, the variables
are specified manually. We also use Unchanged(X), where X
is a set of variables, to represent the RTLA formula stating
that each variable in X is equal to its primed counterpart.

Aside It is important to realize that all the rules we use (for
example those in Figure 2) are foundationally verified with
respect to the semantics of RTLA. As we will discuss more in
Section V, this level of foundational proof has been useful in
uncovering bugs both in our shims and in our formalism.

To illustrate how the proof works, we walk through the
proof obligations obtained by applying SYSIND to our velocity

c = nonzero(W) ∪ free(C) d = free(D)

Q ` 0 ≤ τ ≤ ∆ ∧ I → P

Q ` 0 ≤ τ ≤ ∆ ∧ P ∧D ∧ Unchanged(c ∪ {τ})→ P ′

Q ` τ ≤ ∆ ∧ 0 ≤ τ ′ ∧ P ∧Worldd(W) ∧ C → P ′
SYSIND

�Q ` Sys I (W, C) D ∆→ �P

` Sys Ia (W, Ca) Da ∆→ �P

�P ` Sys Ib (W, Cb) Db ∆→ �Q SYSCOMPOSE

`Sys Ia (W, Ca) Da ∆ ◦ Sys Ib (W, Cb) Db ∆→�(P ∧Q)

Fig. 2. Rules for reasoning about systems.

shim. First, we must prove that P holds on all initial states of
the system:

v ≤ vmax `

[
0 ≤ τ ≤ ∆

∧ max(0, T − g) ·∆ + v ≤ vub
→ max(0, T − g) · τ + v ≤ vub

]
Proving this requires first order reasoning over real arithmetic
in Coq. We can solve simple obligations such as this one,
using existing Coq real arithmetic decision procedures [12] that
produce foundational Coq proofs completely automatically.
While these procedures are not complete, they are still able
to discharge many obligations that arise in practice. When
they are unable to completely prove a goal, we are forced to
manually construct a machine-checked proof of the remaining
obligations. We discuss this process in more detail in Sec-
tion II-E.

Next, we prove that the inductive invariant is preserved by
discrete steps of the system. There are actually two cases to
prove: when the proposed thrust passes the shim’s safety check
and when the shim issues a thrust equal to gravity. In the first
case, we are left to prove the following proof obligation (the
reasoning in the second case is simpler):

v ≤ vmax `



0 ≤ τ ≤ ∆
∧ max(0, T − g) ∗ τ + v ≤ vub
∧ (T? − g) ∗∆ + vmax ≤ vub
∧ T ′ = T?

∧ v′ = v
∧ τ ′ = τ
→ max(0, T ′ − g) ∗ τ ′ + v′ ≤ vub


Note that the velocity is unchanged (v′ = v) because Sys
ensures that continuous variables are unchanged during dis-
crete transitions. Proving this obligation requires first order
reasoning over real arithmetic, but fits into the automation
described above.

Finally, we prove that the inductive invariant is preserved
by continuous transitions. This proof obligation is slightly
more difficult:

v ≤ vmax `

 τ ≤ ∆ ∧ 0 ≤ τ ′
∧ max(0, T − g) · τ + v ≤ vub
∧ Worldd(W)
→ max(0, T ′ − g) · τ ′ + v′ ≤ vub


The continuous evolution of the physical world is expressed by
the formula Worldd(W), the details of which we will explain
in Section III. Intuitively, it captures the fact that the contin-
uous variables evolve according to the specified differential



equations. We prove this obligation using our adaptation of
Platzer’s differential induction proof rule [13], which justifies
a technique for proving invariants of a system of differential
equations without computing an explicit solution. Roughly
speaking, differential induction captures the fact that e1 ≤ e2

is preserved by a continuous transition (e.g. Worldd(W)) if
the derivative of e1 is less than or equal to the derivative of
e2, under the constraints given by W . Applying differential
induction leaves us to prove a first order formula over real
arithmetic.

Proving these four goals completes the proof of (1). The
most difficult part of the proof was in finding an appropriate
inductive invariant. In this case, the arithmetic reasoning was
within the scope of Coq’s built-in automation.

D. Sensors & Composition

While the velocity shim does guarantee the safety prop-
erty, it requires an assumption about an input, namely that
v ≤ vmax . We could modify the specification of the velocity
shim so that it specifies the transition behavior of vmax in
a way that guarantees that v ≤ vmax , thus removing the
assumption. However, this would require reproving the safety
theorem of the velocity shim (formula (1)). By leaving the
sensor under-specified in the velocity shim, we are able to
compose the velocity shim with any system that guarantees
�v ≤ vmax , without needing to reprove the safety theorem
of the velocity shim. In this section, we show how to do this
for several examples, using a general composition rule for our
Sys abstraction.

1) Sensor Error: We start with a simple specification of a
sensor that can read the value of v to within some error ε. To
do so, we first define Sensor

(
S,W,∆

)
, which takes an RTLA

state formula S and a real number ∆, and produces an RTLA
formula:

Sensor
(
S,W,∆

)
≡ Sys S (W, S′) True ∆

This formula expresses the system in which S holds initially,
holds after every continuous transition, and all continuous vari-
ables in S are unchanged by the discrete transition. Intuitively,
S is intended to express the relationship between the physical
variable that the sensor is tracking and the actual value it reads.
For a sensor of some physical variable x, this relationship is
x − ε ≤ xsense ≤ x + ε, where xsense is the sensed value.
However, for our purposes, we actually need an upper bound
on x, which we accomplish by offsetting xsense by ε:

Sense(x, xmax ) ≡
x− ε ≤ xsense ≤ x+ ε ∧ xmax = xsense + ε

In order to satisfy the assumption of the velocity shim, we
instantiate Sense with v and vmax and need to prove that for
any W , ∆, and ε ≥ 0,

` Sensor
(
Sense(v, vmax ),W,∆

)
→ �v ≤ vmax (2)

This theorem follows from SYSIND and simple reasoning
about linear real arithmetic.

2) Composition: We are now in a position to compose the
sensor module with our velocity shim. First, let Sys composi-
tion (◦) be defined by conjoining corresponding formulas:

Sys Ia (W, Ca) Da ∆ ◦ Sys Ib (W, Cb) Db ∆ ≡
Sys (Ia∧Ib) (W, (Ca∧Cb)) (Da∧Db) ∆

Note that since all RTLA formulas operate on the same state
variables, conjunction is a very general notion of composition.

Using the definition of ◦, we can state the theorem that the
composition of our sensor with our velocity shim satisfies the
safety property �v ≤ vub without any assumptions on vmax :

` Sensor
(
Sense(v, vmax ),W,∆

)
◦ VelShim→ �v ≤ vub

This theorem follows immediately from SYSCOMPOSE (shown
in Figure 2). SYSCOMPOSE states that if the first system
guarantees a property, then the second system can assume that
property when it proves its safety condition. The combined
system does not need the assumption; it has been satisfied by
the first system, and has both properties. Similar to SYSIND,
SYSCOMPOSE abstracts all of the reasoning for manipulating
the internals of the Sys abstraction. Crucially, when we apply
SYSCOMPOSE, we do not need to reprove any theorems about
the two systems. Instead we can simply use the soundness
proofs of the sensor and velocity shim to satisfy the premises
of SYSCOMPOSE.

3) Delay Compensation: When we compose the sensor
specification with the velocity shim, we implicitly assume that
the velocity shim can instantaneously read and compute with
the value produced by the sensor module, vmax . In reality, due
to communication or computation time, this may not be the
case. For example, suppose that the sensor module actually
outputs some value, represented by the variable vmax pre

that cannot instantaneously be used in a safety check. The
following system compensates for this delay

DelayComp ≡ Sys I (W,True) D ∆

where W ≡ v̇ ≤ T − g as before and
I ≡ vmax = v + ∆ ·max(0, T − g)
D ≡ vmax

′ = vmax pre + ∆ ·max(0, T ′ − g)

In this system, D uses the current value of vmax pre to
compute an upper bound on v for the next ∆ time.

The correctness property for this system is

�v ≤ vmax pre ` DelayComp→ �v ≤ vmax (3)

Notice that this property relies on the assumption �v ≤
vmax pre. However, we can use the sensor module above
to satisfy this assumption and use SYSCOMPOSE to verify
the combined system without any assumptions, again without
reproving the properties of the individual systems:

` Sensor
(
Sense(v, vmax pre),W,∆

)
◦ DelayComp

→ �v ≤ vmax

Now we have a new system that guarantees the assumption of
the velocity shim, so we can compose them and easily prove
the theorem:
` Sensor

(
Sense(v, vmax pre),W,∆

)
◦ DelayComp ◦ VelShim

→ �v ≤ vub

This approach can be continued for any other sensors, shims, or
full-blown controllers that can be specified and verified within
the Sys abstraction.



E. Height shim

In addition to controlling velocity through a first-derivative,
we have used our deductive approach to control position
through a second derivative. In this section we describe our
implementation of a shim to enforce an upper bound on height
by controlling acceleration. Note that if we were able to
directly set the velocity then we could reuse the velocity shim
(and its proof) simply by renaming the variables. Since directly
setting velocity is unrealistic, we built a new shim that bounds
position by setting its second derivative.

HeightShim ≡ Sys I (W, C) D ∆

where

I ≡ ∀t, 0 ≤ t ≤ ∆→
(0 ≤ v + (T−g)t→
y+td(v, T−g, t) + sd(v+(T−g)t) ≤ yub)∧

(v + (T−g)t < 0→ y + td(v, T − g, t) ≤ yub)
W ≡ ẏ = v, v̇ ≤ T − g
C ≡ True
D ≡ td(vmax , ac,∆)+sd(vmax+ac∆)+ymax ≤ yub

∧T ′=T?

∨ T ′=Tmin

td(v, T,∆) ≡ v ·∆ + T∆2

2 sd(v) ≡ − v2

2·(Tmin−g)

ac ≡ max(0, T? − g) Tmin < g

The approach is similar to the approach of the velocity shim.
Each time this shim runs, it checks whether it will be able to
stop in time if it issues the maximum breaking acceleration
(Tmin) the next time the shim runs. The function td computes
a conservative upper-bound on the height at the end of ∆
time and sd computes the stopping distance assuming Tmin

breaking acceleration. We have formally proven that the height
shim guarantees that y never exceeds yub, under the assumption
that ymax and vmax are bounds on their respective physical
variables. Formally,

�(y ≤ ymax ∧ v ≤ vmax ) ` HeightShim→ �y ≤ yub

As with the velocity shim, we can compose the height shim
with modules guaranteeing the assumptions that the height
shim makes on ymax and vmax . Using SYSCOMPOSE, we can
easily prove that the composed system guarantees �y ≤ yub
from the individual proofs.

Verifying the height shim differs from the velocity shim in
two ways. First, the differential equations describing the phys-
ical evolution of the system, the shim logic, and therefore the
inductive invariant are all more complex. This in turn means
that the real arithmetic proof obligations are substantially more
intricate. In practice, this means that the existing foundational,
nonlinear real arithmetic decision procedure is not able to
solve all of the goals, even though the unverified SMT solver
Z3 [14] solves all goals quickly. Second, the verification used
history variables (omitted from the specification in this paper
for simplicity) to record the value of each physical variable in
the last discrete transition. We use these values to describe the
safety buffer that the system consumes during the continuous
transition. These variables do not change the behavior of the
shim in any way; they are used only for reasoning.

Benefits of Composition: When verifying our two shims,
the vast majority of the verification effort was devoted to
foundationally reasoning about real arithmetic proof obliga-
tions. Our composition technique takes a step towards re-
ducing that burden. As a point of comparison with the non-
compositional approach, our first implementation of the height
shim was monolithic, including all of the code for reasoning
about delay compensation (but not sensor error). The result
was more complex real arithmetic goals containing larger
expressions and more variables. When we verified the height
shim compositionally, the arithmetic proof obligations were
simpler and, as a result, required less manual proof effort to
simplify the goals into a form that the foundational decision
procedures could handle. Moreover, verifying the height shim
with the noisy sensor was simply a matter of combining the
independent proofs using SYSCOMPOSE. This is a promising
result considering that the number of variables influences the
complexity of the inductive invariant which is directly related
to complexity of automatic verification.

Finding Inductive Invariants: In general, one of the chal-
lenges of formal verification lies in building a suitable induc-
tive invariant, and hybrid systems are no exception. However,
we have found that developing the inductive invariant is
actually a part of the process of developing the shim. For
example, when building the velocity shim, we first built the
inductive invariant stating that the thrust is safe until the next
time the shim runs. We then built a shim to compute a thrust
that will be safe until the next time it runs; this followed
naturally from the inductive invariant. This means that we have
not found the task of finding an inductive invariant to be an
additional burden on top of the necessary task of building the
shim itself. Instead, we found these two tasks to be naturally
related, regardless of whether or not one performs foundational
verification.

III. TLA

As we have already discussed, our Sys abstraction unfolds
to an RTLA formula, which is expressed within Coq. While
Sys is designed to model hybrid systems, RTLA is a general
purpose formalism that does not have any constructs specific
to hybrid systems. In this section, we explain how we define
Sys on top of our embedding of RTLA in Coq.

A. Embedding RTLA inside of Coq

To gain the power of a general purpose, foundational
proof assistant in addition to the benefits of our TLA-inspired
formalism, we developed RTLA as an embedded domain
specific logic inside of Coq. RTLA primarily differs from
TLA in three ways. First, since the majority of our reasoning
is numeric and about the physical world, RTLA fixes all
variables to take on real number values. Second, we need some
mechanism for specifying physical dynamics, which are most
naturally described using differential equations. Rather than
extending RTLA with a specialized formalism of differential
equations, we instead allow embedding arbitrary Coq state
relations directly into RTLA. This enriching of RTLA with
arbitrary Coq propositions is analogous to Lamport’s enriching
of TLA with set theory to build TLA+ [15]. Third, RTLA
allows formulas that are not invariant under steps where none
of the formula’s variables change (stuttering). This was not an



issue for our examples, but in the future, we plan to study the
importance of stuttering-invariance for other hybrid systems.

B. Sys in TLA

Our Sys abstraction captures the various pieces that com-
pose a hybrid system and expresses them as an RTLA formula.
At an intuitive level (and temporarily ignoring timing con-
straints), Sys must encode the fact that a system can evolve
either continuously according to some differential equations
or discretely according to the discrete program. Throughout
the rest of this section, c refers to the set of continuous
variables and d the set of discrete variables – formally c =
nonzero(W)∪ free(C) and d = free(D). The untimed version
of Sys is the following:

Sysuntimed I (W, C) D ≡

I ∧�

[
Worldd(W) ∧ C (continuous)

∨ Discrc(D) (discrete)

]
Discrc(D) describes the discrete evolution of the system using
the action formula D. We additionally require that the values
of the continuous variables are unchanged.

Discrc(D) ≡ D ∧ Unchanged(c)

The interesting part of Sys arises when we describe the
continuous evolution of the world. The first part of the world
transition captures the evolution of the continuous variables
over time using the following definition:

Continuous(ẋ1 ∼1 e1, . . . , ẋn ∼n en) ≡
∃(r : R) (f : R→ Var→ R), 0 < r
∧Solves(f, ẋ1 ∼1 e1, . . . , ẋn ∼n en, r)
∧x1 = f(0, x1) ∧ . . . ∧ xn = f(0, xn)
∧x1

′ = f(r, x1) ∧ . . . ∧ xn′ = f(r, xn)

Here, r is the amount of time that the system evolves for,
f is a solution to the differential (in)equations (expressed by
the Solves predicate using Coq’s real analysis library, with
∼i∈ {=, <,≤, >,≥}). The final two lines relate the starting
state to the value of the differential equation at 0 and the final
state to the value of the differential equation at time r. We
build the dynamics of the world on top of Continuous using
the following formula.

Worldd(ẋ1 ∼1 e1, . . . , ẋn ∼n en) ≡
Continuous({ẋ1 ∼1 e1, . . . , ẋn ∼n en} ∪ {ḋi = 0})

It is important to note that setting the derivatives of the discrete
variables to 0 is a stronger statement than simply saying
that they are unchanged since the derivatives of continuous
variables can depend on the discrete variables.

At first glance, our definition of continuous transitions may
seem strange, since any single sequence of states satisfying
Sys does not capture all intermediate states of the system.
Instead, the discrete trace captures finite observations along
the continuous evolution of the physical world. In fact, it
may seem as though a sequence of states is a poor fit for
describing the continuously evolving physical world since time
and other continuous variables can only advance in discrete
steps. Lamport argues for the adequacy of this encoding in
TLA+ [16] and Platzer gives a more detailed treatment of the
argument in [13]. The core of the argument lies in the fact
that in RTLA (and TLA) we prove properties of all sequences

of states rather than properties of a single sequence of states.
This means that when we prove ` Sys I (w,C) D ∆→ P for
some property P , we are proving that P holds on all sequences
of states that satisfy Sys I (w,C) D ∆. In other words, we
are proving properties of all possible sequences of samplings
of the hybrid system’s state. Even if a particular sequence skips
a state in the evolution of the physical world, the definition of
Continuous allows another sequence to contain that state.

Expressing Timing Constraints: The primary limitation
of Sysuntimed is that it does not express timing constraints. This
deficiency allows the world to execute for as long as it wants,
which is clearly undesirable if the discrete system is to enforce
non-trivial properties. To express timing constraints, we enrich
the Sysuntimed definition into the definition of Sys by adding
the highlighted pieces:

Sys I (W, C) D ∆ ≡

I ∧0≤τ≤∆ ∧�

 Worldd(W ∪{τ̇=−1} ) ∧ C ∧0 ≤ τ ′

∨Discrc(D)∧0 ≤ τ ′ ≤ ∆

∨Unchanged(d ∪ c∪{τ} )


The τ variable is a timer that represents the maximum amount
of time that the world can run for before the discrete system
must run. In the continuous transition, this timer decreases
with a derivative of -1 and the constraint 0 ≤ τ ′ prevents the
transition from evolving for too long. The second conjunct in
the discrete transition allows the discrete transition to pick any
amount of time between 0 and ∆. We choose this formulation
because it allows us to prove that all properties of slower
systems also hold when the system runs faster, i.e. when ∆ is
smaller.

IV. FROM MODEL TO REALITY

In addition to modeling and verifying our systems, we also
implemented both the velocity and height shims to run on a 3D
Robotics Iris+. Running the system whose model we verify is
important because it allows us to experimentally evaluate the
gap between the model and the actual system that we run. We
can divide this gap into two pieces: the gap due to our model
of the physical world (Section IV-A), and the gap due to our
model of the discrete controller (Section IV-B). We conclude
by discussing some of the insights that we gained from running
our code on an actual quadcopter (Section IV-C).

A. A Small Model in a Big World

The primary gap between the physical world and our model
lies in the fact that our model captures only the vertical
dimension. In particular, it does not model the orientation of
the quadcopter and therefore does not capture the direction of
thrust. However, a model that includes attitude is a refinement
of the world model that our specifications use. This means
that all traces allowed by a model including attitude are also
allowed by the world model used in our specifications. As we
explained in Section II-B, this is because our specifications
model the world using differential inequalities stating that the
vertical thrust is upper-bounded by the thrust produced by the
motors. This relaxation of the specification means that we must
prove properties of a more liberal system, but it allows us to
use our results in the more constrained, richer model which
includes attitude.
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Fig. 3. A simplified depiction of the ArduPilot architecture (a) without any
modification, with our shim running (b) before and (c) after the motor mixing
code. Black boxes denote verified code.

The other discrepancies between our model and the real
world are common simplifying assumptions of models for
verification purposes. For example, modeling external factors
such as wind, air resistance, etc. would be possible by adding
extra terms into the differential world description. Finally, our
model also relies on the common assumption of instantaneous
change of discrete variables such as thrust. In principle, output
values such as thrust actually change over a very small amount
of time. The wealth of literature suggests that this is a
reasonable assumption but it nonetheless constitutes a formal
discrepancy.

B. From Relations to Bits

Our description of the shim architecture in Section II
describes the shim as the last piece of code that runs before
signals are sent to the motors. This is not strictly necessary.
There are advantages and disadvantages to running the shim
at different points.

Figure 3.(a) depicts a simplified version of the ArduPilot
architecture without any of our modifications. The existing
control software takes input from the user and sensors and
outputs a desired throttle, roll torque, pitch torque, and yaw
torque to the “motor mixer” module. This module then com-
putes the signals to send to each of the four motors to
best approximate the desired behavior. The approximation is
necessary because it is not always possible to achieve all four
desired values simultaneously since the quadcopter relies on
differences between motor speeds to induce non-zero torques.

One place to execute our shim is before the motor mixing
module (Figure 3.(b)). At this point, our shim executes directly
on the desired throttle of the higher-level controller. To meet
the interface of our specifications of both the height and
velocity shims, we must convert this input into a desired
vertical thrust (T?). We must also convert the thrust output by
the shims (T ) into a desired throttle that serves as the input to
the mixer module. We accomplish both tasks by multiplying
the throttle by a constant which we determined empirically.
We discuss the consequence of this choice in Section IV-C.
As we have already discussed, this will actually provide an
upper bound on vertical acceleration, an acceptable input to
our shims. Placing the shim here allows the motor mixer to
optimize the engine outputs to achieve the other parameters

(attitude torques) as best it can. However, it also requires
us to trust that the motor mixer module never exceeds the
desired throttle, a property that we believe to hold but have
not formally verified.

Running after the motor mixer (Figure 3.(c)) allows us to
remove the mixer from the trusted computing base. To meet
the interface at this level, we must translate between the motor
signals and the induced thrust. We again accomplish this using
an empirically determined constant that we use to scale each
of the motor signals. If the shim rejects the proposed thrust,
then it must compute new signals for the motors to induce a
safe thrust. There are many ways to achieve a particular total
thrust by adjusting four motor signals. In order to minimize
the affect of the shim on attitude dynamics, we linearly scale
back each of the motor values to achieve the thrust output by
the shim.

Regardless of where we insert the shim, the trusted com-
puting base still includes the sensor fusion code that runs on
the quadcopter. We use this code to provide bounds (vmax

and ymax) on physical variables, in essence treating the sensor
fusion code as an unverified sensor module. This code is
substantially larger and more complex than the motor mixing
code and we are interested in applying our techniques to reason
about it in the future. We are also trusting our (currently
manual) translation of the model from RTLA to C code. This
translation includes picking an appropriate value for ∆, the
maximum time between discrete transitions. However, any
upper bound suffices since our proofs hold for all ∆. Finally,
we ignore the formal gap between real arithmetic used in our
models and floating-point arithmetic used in the running code.
In future work we plan to close this formal gap using Coq’s
libary for reasoning about floating point computation [17].

C. Empirical Results

Evaluating empirical results of this nature is important
when exploring models. For example, when we first described
our shim logic to an expert pilot he was concerned that
disengaging the motors so harshly might have a destabilizing
effect on the quadcopter. It was only experimentally that we
learned that this was not the case.

Experimentally, both the velocity and the height shim en-
force their respective safety properties. The height and velocity
shims allowed the quadcoptor to go right up to the provided
height or velocity bounds. In some rare cases, the quadcopter
went above the bounds, by a small amount, for example about
ten centimeters for a height bound of 30 meters. We attribute
these small violations to un-modeled forces such as wind,
sensor inaccuracy, and inaccuracy in the measured relationship
between throttle/motor signals and thrust induced. In fact, we
found the measured relationship between signals and thrust to
have a significant impact on the behavior of the quadcopter
and was perhaps the greatest source of error that we noticed.
We were careful to be conservative when measuring these
constants; since our shims both provide upper bounds, we can
safely err on the side of constants that provide upper bounds on
acceleration. In the future, we plan to investigate running our
shims on top of closed-loop acceleration controllers to avoid
the need for these empirical constants.



We flew the quadcopter in both loiter and stabilize modes,
and also had the quadcopter approach the height and velocity
bounds from a variety of velocities and orientations. In all
cases, the shims enforced their safety properties with rare,
small violations, and allowed us to retain control over the quad-
copter. We never ran both shims simultaneously because we
have no verification results for this scenario. Fundamentally,
to compose the shims we are obliged to show that the shims
do not conflict with one another, e.g. by requiring different
remedial actions.

Also, recall that our height shim is conservative in the way
that it estimates upward thrust: it assumes that the thrust re-
quested by the higher-level controller would be applied directly
in the upward direction, even if the attitude of the quadcoptor
is not upward. As a result, if the attitude is not level, our
height shim assumes that there is a larger upward thrust than
really occurs, and so it will engage earlier than it needs to.
We noticed this effect experimentally: when approaching the
height through a non-level attitude, the quadcopter would stop
ascending at a lower height than the actual bound. Further-
more, when the quadcopter is at the height bound with the
shim engaged and the upward throttle stick engaged to the
maximum, if we start rolling or pitching, the quadcopter will
not only move in the x-y direction, but it will also descend
slightly, since as the orientation changes, the height shim
becomes more conservative.

Finally, we also tried our velocity shim with a small
negative velocity as the bound. With the throttle stick engaged
to the maximum, this caused the quadcopter to land while
allowing us to control other aspects of the flight such as attitude
and x-y positioning.

V. DISCUSSION

In this section we discuss the motivation for our design de-
cisions. We begin by motivating the use of foundational proof
assistants (Section V-A) including some anecdotal evidence
for the benefits of foundational proofs. Next, we motivate our
choice of RTLA as a formalism (Section V-B) highlighting
some of the useful principles that underlie its design.

A. Benefits of Foundational Proof Assistants

Proof assistants provide strong guarantees: they require all
proofs to be done in full formal detail, with an unparalleled
attention to every single detail. This attention to detail can find
subtle but critical problems that otherwise might go unnoticed.
For example, we initially axiomatized differential induction
instead of proving it sound within our framework. We used
this axiom to “verify” a version of the height controller that
was in fact not safe (note also that the height controller itself
is not trivial, and it is actually quite easy to get it wrong).
This left us in an unfortunate state of blissful ignorance:
we had a subtle bug in our shim, but we did not uncover
it at first, even though we were applying formal methods,
because our statement of differential induction was subtly
incorrect. It was only when we attempted to foundationally
prove, rather than axiomatize, differential induction that we
found our initial phrasing of the proof rule to be unsound.
Fixing the statement led us to find several issues with earlier
versions of our formalism that appeared reasonable but were, in

fact, insufficiently constrained and therefore not correct. These
anecdotes underscore the key benefit of foundational proofs:
they provide a high level of confidence.

In addition to the foundational guarantees, proof assistants
provide very expressive, general purpose logics, which can
serve as the foundation of a wide range of interesting theories.
We are already leveraging the standard library’s real analysis
theories to reason about real arithmetic and calculus. As
we extend our verification beyond the shims that we have
developed, the full power of Coq’s rich logic and all of the
theories built up in it are at our disposal.

The deductive reasoning style embodied in proof assistants
provides useful feedback when verification fails since the user
is guiding the proof. When a proof does not work, the user
is aware of all of the steps taken in the development and
often learns enough from the failed proof to be able to fix the
system. This feedback is complementary to counter-examples
provided by tools such as Z3 [14], which do not provide
foundational proofs for nonlinear real arithmetic. This process
of building proofs also makes the developer more aware of the
minimal assumptions that a hybrid system is making and the
maximal guarantees that it can ensure. In practice, we have
found that proofs lead us to find more general, and therefore
compositional, interfaces that are easier to satisfy. Further, we
believe that the search for these interfaces is the key to richer
forms of composition such as conjoining multiple shims that
operate on dependent variables such as height and velocity,
which we do not address in this work.

Proof assistants also allow us to build automation without
sacrificing foundational proofs. In this work, much of that
automation surrounds our embedding of temporal logic. This
automation is scripted in Ltac, which means that the automation
lies completely outside of our trusted computing base. This
property has allowed us to rapidly iterate on the automation
without needing to worry about its soundness.

Automation for Real arithmetic: The biggest drawback
to the use of foundational proof assistants for formalizing hy-
brid systems is the lack of good automation for reasoning about
real arithmetic. For example, the only real arithmetic decision
procedure currently implemented for Coq is psatz [12] which
can be extremely slow, even for simple goals. This is especially
true when the goal is unprovable; psatz can run for hours
before overflowing the stack. While developing our proofs we
often passed real arithmetic goals to Z3 to sanity check them
before running them through psatz. The value of doing this
throughout the development process could easily be measured
in hours (or days) of productivity gained. Our composition
theorems are another step towards reducing the proof burden
by factoring the problem into more manageable pieces. We
believe that even more abstraction is possible by codifying the
“tricks of the trade” as formal, general-purpose proof rules.

B. Benefits of TLA

Now we turn to our choice to model RTLA on TLA and
define the Sys formalism on top of it. TLA is only one of many
logics that have been proposed for reasoning about hybrid
systems [6], [13]. In this section we seek to illuminate some
of the benefits of TLA that are inherited by RTLA. We will
discuss other logics in Section VI.



One of the biggest benefits to using TLA is that refinement
is natural to express; it is simply normal logical implication.
For example, the following (standard) proof rule gives us the
ability to derive a property about a more concrete system (P )
using a proof about a more abstract system (P ′) given that P
implies (is a refinement of) P ′:

` P → P ′ ` P ′ → Q
REFINEL` P → Q

Using this rule we can show that the sensor with error from
Section II-D can be used to implement the upper bound
velocity sensor needed by the velocity shim. TLA also uses
refinement for building simple abstractions. For example,
rather than thinking of the velocity shim as missing the sensor
component, we can instead think of it as being defined with a
very under-specified sensor, and the sensor module provides a
refinement of that specification. In this way, composition and
refinement are one and the same.

Refinement is particularly powerful in TLA because tran-
sitions are unconstrained by default. Unlike in a programming
language where x = y + 1 means that x changes and the
rest of the world stays the same, in TLA, x′ = y + 1 allows
the rest of the world to evolve arbitrarily. This allows other
components to execute “in parallel” on their own state simply
by joining the programs using conjunction. The only drawback
to this approach is that care must be taken to avoid these
programs from interfering with one another in unexpected
ways. We avoid this problem by enhancing our formalism with
a mechanism for renaming variables in RTLA formulas.

VI. RELATED WORK

There has been a tremendous amount of work on the
specification and verification of hybrid systems. In this section,
we describe some of the prior work in this area, highlighting
the commonalities and difference with our own work. In
general, the primary difference lies in our use of foundational,
deductive proofs.

Roughly speaking, prior work on specification and verifi-
cation of hybrid systems falls into two categories: logics for
hybrid systems and hybrid automata.

A. Logics for hybrid systems

A number of logics have been developed for reasoning
about hybrid systems. In most cases, we distinguish ourselves
by completely formalizing our logic within a foundational
proof assistant.

Closely related to our development is Platzer’s differen-
tial dynamic logic (∂DL) [13]. ∂DL includes a deductive
proof calculus for reasoning about hybrid systems. A key to
reasoning about continuous transitions in ∂DL is differential
induction [13]. In this work, we adapted a simplified version
of differential induction to our framework and proved it sound
in the underlying formal semantics of RTLA. To the best of
our knowledge this is the first mechanization of the differential
induction proof.

Platzer implemented ∂DL in KeYmaera [13] and has
used it to verify a number of interesting problems including:

an airborne collision avoidance maneuver [18], intelligent
cruise control [19], and a robot for performing surgery [20].
While KeYmaera is deductive, it is not foundational and
includes complex external solvers within its trusted comput-
ing base [13]. In addition, the generality of our underlying
logic allows us to leverage other Coq developments without
compromising our small trusted core.

There has also been work on formalizing hybrid systems
inside TLA+ [10], [16], [21]. These developments, just like our
own, use Lamport’s technique for expressing continuous time
within the propositional formalism thus avoiding pulling this
complexity into the underlying formalism. While TLA+ has
been embedded in the Isabelle proof assistant [22], to the best
of our knowledge, none of the prior work on hybrid systems
has built on this embedding.

Recently, Anand and Knepper performed an impressive
deductive Coq verification of properties of ground robots,
using an embedding of a hybrid extension of the logic of
events [9]. However, they do not provide a proof calculus
for their logic, as we do. This proof calculus allows us to
easily perform compositional verification, thus reducing the
foundational proof burden. Moreover, our choice to verify
shims allows us to retain the benefits of complex off-the-shelf
control software while enforcing safety guarantees.

Finally, there has been prior work on developing temporal
logics specifically for real time and hybrid systems [6], [23].
In these logics, time and other continuous variables are given
special treatment and the behavior of these variables appears
in the semantics of the logic. In this dimension, our choice
of TLA is motivated by the desire to easily reason about
refinement—a key property in closing the gap between models
and their implementations.

B. Hybrid Automata

Hybrid automata are a popular formalism for modelling
hybrid systems [24]. A hybrid automaton can be represented
by a graph where a node represents a control mode with
an associated continuous evolution (typically specified by a
system of differential equations) and edges represent discrete
transitions of the system.

Verifying safety properties of a hybrid automaton is typ-
ically done by model checkers. There are a number of
highly successful implementations such as HyTech [4] and
PHAVer [5]. Unfortunately, since hybrid systems are inher-
ently infinite-state, the reachability problem is undecidable in
the general case [25]. In fact, reachability is only decidable
for a very restricted class of automata, for example rectangular
automata. Even small generalizations of these classes lead to
undecidability.

To address the problem of infinite states, it is common to
verify a finite state abstraction of a hybrid automaton. Many
techniques have been developed to automatically compute
finite-state abstractions of hybrid automata [26], [27]. How-
ever, automatically constructing suitable abstractions is not
always successful and manually constructing an appropriate
abstraction can be difficult.

One of the benefits of building on top of a general-purpose
proof assistant is the ability to use its logical core as a



foundation for composition of reasoning tools. For example,
we can use verified model checkers, e.g. the one developed by
Niqui [28], to prove properties in a foundational way. Here,
the soundness proof of the model checker serves as an abstract
proof for all of the properties that it derives. This approach
would enable us to leverage previous work on verifying hybrid
systems in Coq [28]–[31]. We can then use Coq to prove
a refinement relation between the verified automaton and a
logical formula in order to use the result within our setting.

Hybrid systems have also been verified in other proof
assistants: e.g. PVS [8] and HOL [7]. Beyond the particular
choice of proof assistant, our work differs from these by taking
a deductive approach and by making heavy use of differential
induction to reason about the continuous dynamics.

C. Architectures for hybrid system safety

There has also been work on architecting hybrid systems in
order to ensure safety in the presence of complex, unverified
controllers. Much of this work has been based on the simplex
architecture [11]. In this architecture, there is a simple module
that constantly monitors the system and takes control away
from more complex modules before the system can enter an
unsafe state. We follow a similar principle with our shim
architecture.

Livadas and Lynch solve a similar problem using hybrid
I/O automata to model and reason about “protectors” for
hybrid systems [32]. A protector is designed to ensure a safety
property of a particular hybrid system.

VII. CONCLUSIONS

In this paper, we formalized a representation of hybrid
systems on top of a TLA-inspired formalism inside the Coq
proof assistant. We demonstrated how to use our formalization
to compositionally build foundational proofs of shims that
enforce safety properties of otherwise unmodified systems.
We built, verified, and tested shims for enforcing both a
maximum vertical velocity and a maximum height. Finally, we
reported on our experiences, including some of the difficulty
of reasoning about real arithmetic, the benefits of composition
when performing this reasoning, the advantages of founda-
tional verification, and some of the benefits of building on top
of TLA. In the future, we plan to explore liveness properties of
shims and to leverage the expressivity of the underlying Coq
formalism to carry our proofs from the high level models all
the way down to the bits that run on the quadcopter.
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