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1. Introduction
We increasingly rely on computers to interact with the physical
world for us. At the large end, software underlies the control sys-
tems of commercial aircraft and power plants, and at the small
end it controls medical devices and hobbyist UAVs. The failure
of any of these systems can have severe consequences which are
often measured in the loss of human lives. Formal verification has
proven a promising approach to achieving very strong guarantees
in more classic areas of computer science. In this work we present
an overview of our experiences formalizing stability properties of
cyber-physical systems (CPSs) using the Coq proof assistant.

In particular, we describe and contrast two approaches for prov-
ing the stability of the linear, one-dimensional proportional con-
troller (P-controller) depicted in Figure 1. This system runs in a
loop where the controller sets the velocity (v) of the system and
then the position (x) evolves continuously according to the differ-
ential equation ẋ = v for at most ∆ time while v remains constant.
The goal of the controller is to move the system to x = 0.

2. System Specification
We carry out our verification on top of the VeriDrone project [1], a
formalization of cyber-physical systems in the Coq proof assistant.
VeriDrone expresses CPSs and their properties uniformly in a linear
temporal logic deeply embedded inside of Coq. For example, the
specification of our system take the following form:

Init ∧ 2 (Discr ∨ World)

The first conjunct (Init) is a predicate over the initial state of the
system. The second conjunct (2(. . .)) expresses the transitions of
the system. It specifies that all temporally adjacent states are re-
lated by either Discr, a discrete transition that is morally of type
State→ State→ Prop, or World, a continuous transition of
the physical world expressed with predicates over the state and the
time-derivative of variables in the state. The discrete and continu-
ous transitions for our system are the following:

Definition Discr := v! = −x / ∆ ∧ T! ≤∆ ∧ t! = t ∧ x! = x.

Definition World :=
Cont (fun ∂⇒ ∂x = v ∧ ∂v = 0 ∧ ∂t = 1 ∧ ∂T = −1 ∧ T! > 0).

Note that x! represents the value of x in the next state.
In addition to the variables x and v, we need two additional

variables to fully specify our system: t tracks the current time of
the system, and T acts as a stopwatch which is reset every time the
discrete system runs. In the definition of ]̧oqeDiscr, v! = −x/∆
specifies the P controller, T! ≤∆ specifies the resetting of the
stopwatch, and t!=t ∧ x!=x specify that the continuous variables
are unchanged. In the definition of World, ∂ x = v specifies the
differential equation ẋ = v, ∂ v = 0 specifies that the velocity
remains constant during continuous transitions, ∂ t = 1 specifies

discrete transitions

continuous transitions

t

x

Figure 1. Visualizing the proportional controller.

that t tracks the current time, ∂ T = −1 count down at the same
rate that time advances. The final assertion (T! ≥ 0) ensures that
the continuous dynamics can not evolve when the stopwatch has
no time left.

3. Stability
In this work we use the VeriDrone system to reason about “sta-
bility” in the control theory sense. Stability is a classic property
that captures a temporal notion of boundedness in terms of distance
from a goal point. We will focus on two notions of stability which
are shown graphically in Figure 2:

1. Lyapunov stability states that if the system starts within β > 0
from the goal, then it will stay within α of the goal point for all
time. In our temporal logic, x is Lyapunov stable if

Definition LyapunovStable (x : Term) : Formula :=
Forall α : R, α > 0→ (* boundary *)
Exists β : R, β > 0 ∧ (* start *)

(| x| < β)→ 2(|x| < α).

Note that the universal quantification of the boundary implies
that if the system starts arbitrarily close, then it will remain
arbitrarily close. However, the definition does not imply that the
system converges. For example, the system that stays a constant
distance from the goal is Lyapunov stable.

2. Exponential stability is a refinement of stability that guaran-
tees that the system converges to the goal exponentially fast.
The formal definition is the following:

Definition ExpStable (x : Term) : Formula :=
Exists α : R, α > 0 ∧ Exists β : R, β > 0 ∧
Exists x0: R, x = x0 ∧ Exists t0 : R, t0 = t ∧

2(|x| ≤ (α ∗ |x0| ∗ eˆ(−β ∗ (t − t0))).

The first line existentially quantifies both α and β, and the
second line captures the initial configuration (time in t0 and the
value of x in x0). In this definition t is the global time which
increases monotonically, i.e. we must prove that our system is
confined by a single exponential regardless of the number of
discrete and continuous transitions it takes.
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Figure 2. Visualization for Lyapunov and exponential stability.

4. Proving Stability Directly
We began by proving that our system is Lyapunov stable directly.
While cumbersome due to the heavy use of arithmetic, the proof is
quite similar to those performed when verifying safety properties
of monitors in VeriDrone [1].

The proof proceeds by the following rule which describes tem-
poral logic induction. We divide the safe region into two parts: one
where x ≥ 0 and the other where x ≤ 0. Because the controller
is symmetric around 0, it suffices to prove just the case where x
≥ 0 and use a substitution of x 7→ −x to prove the x ≤ 0 case.
Since the controller always directs the system towards 0, showing
that the upper bound is not violated is simple. The difficulty lies in
showing that the system never crosses 0, which guarantees that it
will never cross the lower bound. We argue this using differential
induction [2], which allows us to prove that an inequality is pre-
served by a continuous transition if the inequality holds between
the derivative of the two sides. For example, to show that x ≥ 0,
we need to strengthen the statement to state that x ≥ −v ·T , i.e. the
distance from 0 is at least the distance the system will travel before
the stopwatch expires. Differential induction allows us to prove this
by showing the following

ẋ = v ≥ d

dt
[−v · T ] = −v̇ · T +−v · Ṫ = v

Exponential Stability We are currently in the process of proving
the same controller exponentially stable. The proof generally fol-
lows the same structure except that we must now show the system
approaches the goal at least as quickly as the exponential that is
bounding it. Figure 3 provides a graphical sketch of the reasoning.

As with the Lyapunov stability proof, we will simply consider
positive values of x and use symmetry to argue the lower bound.
We pick α = 1 and β = 1

δ
. The choice of β here is essential for

this particular controller. In particular, note that the velocity chosen
by the controller −x

δ
is exactly the slope of the exponential where

it crosses the horizontal line through x. Therefore, the trajectory
of the system is parallel to the tangent line. Since the exponential
is concave up it is always greater than its tangent line (a fact we
proved in Coq). By transitivity the system is always below the
exponential during continuous transitions.

To extend this proof to the entire system we must incorporate the
behavior of the discrete transition, in particular ensuring that it sets
the velocity appropriately. We have found this to be difficult due to
the structure of our proofs which mention explicitly the state at the
beginning of the continuous transition. When included in the global
proof, we must manifest these values explicitly and connect them
to the system, which has been more difficult than we anticipated.

5. Stability Proofs using Lyapunov Functions
In addition to the visually appealing approach described in Sec-
tion 4, we have also begun exploring the use of Lyapunov functions
to prove stability. Lyapunov functions allow one to prove the sta-
bility of a system using a notion of the energy of the system which
decreases over time until it reaches an equilibrium. More precisely,
a Lyapunov function for a one-dimensional system with an equilib-
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Figure 3. Graphical “proof” of exponential stability.

rium at 0 is a function V : R→ R such that V (0) = 0, V (x) > 0
for x 6= 0, and satisfying some condition on the time-derivative,
V̇ (x). The condition on V̇ (x) depends on the particular notion of
stability one would like to prove. For Lyapunov stability and expo-
nential stability, the conditions are V̇ (x) ≤ 0 and V̇ (x) ≤ αV (x)
for α < 0, respectively.

For a purely continuous proportional controller, specified by the
differential equation ẋ = −x, the function V (x) = 1

2
x2 serves as

a Lyapunov function satisfying all three conditions on the time-
derivative and thus establishes both notions of stability. To see this,
note that V̇ (x) = xẋ = −x2. Unfortunately, for our hybrid P-
controller, the same computation gives us V̇ (x) = xẋ = x ∗ v.
However, we can prove that our P-controller is a refinement of
the system in which ẋ = −x

∆−(t−T )
. In other words, the velocity

is proportional to the distance from the equilibrium and inversely
proportional to the time remaining before the controller must run
again. Using this abstraction, it is possible to establish all three
conditions on the time derivative of V and hence both notions
of stability. Thus far, we have only completed the Coq proof of
Lyapunov stability of our P-controller using a Lyapunov function.

6. Discussion
It is interesting to contrast the process of formalizing the graphically-
inspired proofs with the proofs based on Lyapunov functions.
Though the graphically-inspired proofs appear to be more intuitive
on paper, our current experience suggests that they are more chal-
lenging to formalize due to a lack of abstraction of time. Lyapunov
functions provide this abstraction and hence seem to provide an
cleaner path to a fully formal proof. However, the time-abstraction
seems a bit tenuous when using Lyapunov functions for a hybrid
system rather than a purely continuous one. For example, our ap-
proach above implicitly relies on being able to completely solve the
differential equations, something that is often best to avoid. This is
especially the case since differential equations are often not equa-
tions at all, but rather inequalities. More investigation is necessary
to determine how both of these approaches scale to more complex
hybrid systems.

Our initial work on stability has focused on a one-dimensional
P-controller. P-controllers are the first step on the path to PID
(Proportional-Integral-Derivative) controllers, which will allow ex-
pressing more exciting behaviors such as oscillatory convergence
to a goal. While still relatively simple, PID controllers form the
vast majority of controllers in practice. Ideally, the construction of
a verified PID controller would follow from a layered composition,
allowing for the separate construction of the I and D controllers.
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