The Grand Challenge
How to properly use multi-cores?

Concu rrency: STM Need new programming models!

Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart
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Parallelism vs Concurrency Concurrent Programming

* A parallel program exploits real parallel
computing resources to run faster while
computing the same answer.

— Expectation of genuinely simultaneous execution

Essential For Multicore Performance

— Deterministic

* A concurrent program models independent
agents that can communicate and synchronize.
— Meaningful on a machine with one processor

— Non-deterministic
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Concurrent Programming What’s Wrong With Locks?

Races
State-of-the-art is 30 years old! Forgotten locks lead to inconsistent views
Locks and condition variables Deadlock

Java: synchronized, wait, notify Locks acquired in “wrong” order

Lost Wakeups
Locks etc. Fundamentally Flawed

W o1 o Forgotten notify to condition variables
Building a sky-scraper out of matchsticks

Diabolical Error recovery
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Even Worse! Locks Don’t Compose Even Worse! Locks Don’t Compose

class Account{ 1st Attempt transfer =withdrawthen deposit
float balance;

class Account{

. . . float balance;
syggggﬁzézig ;z%? deposit(float amt) { synchronized void deposit(float amt) {
} balance += amt;

}
synchronized void withdraw(float amt) { synchronized void withdraw(float amt) {
if (balance < amt)

if(balance < amt)
throw new OutOfMoneyError(); throw new OutOfMoneyError();

balance -= amt; } balance -= amt;

} } void transfer(Acct other, float amt) {
other.withdraw(amt);
this.deposit(amt);}

A Correct bank Account class )

Write code to transfer funds between accounts
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Even Worse! Locks Don’t Compose

Even Worse! Locks Don’t Compose

1st Attempt transfer =withdrawthen deposit

class Account{

float balance;

synchronized void deposit(float amt) {
balance += amt;

}

synchronized void withdraw(float amt) {
if(balance < amt)

throw new OutOfMoneyError();

balance -= amt;

void transfer(Acct other, float amt) {
other.withdraw(amt);

this.deposit(amt);}
} \

\
[ Race Condition Wrong sum of balances ]

2t Attempt: synchronized transfer

class Account{

float balance;

synchronized void deposit(float amt){
balance += amt;

}

synchronized void withdraw(float amt){
if(balance < amt)

throw new OutOfMoneyError();

balance -= amt;

}

synchronized void transfer(Acct other, float amt){
other.withdraw(amt);
this.deposit(amt);}
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Even Worse! Locks Don’t Compose

9 Tuesday, March 5, 2013 10

Locks are absurdly hard to get right

2t Attempt: synchronized transfer

class Account{

float balance;

synchronized void deposit(float amt){
balance += amt;

}

synchronized void withdraw(float amt){
if(balance < amt)

throw new OutOfMoneyError();

balance -= amt;

}

synchronized void transfer(Acct other, float amt){

other.withdraw(amt);
this.deposit(amt);}
}

A\

[ Deadlocks with Concurrent reverse transfer ]

Scalable double-ended queue: one lock per cell

% 2

If ends “far” apart

But watch out!
If queue is 0, 1, or 2 elements long
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Locks are absurdly hard to get right

Locks are absurdly hard to get right

Difficulty of queue
implementation

Coding Style

Sequential code Undergraduate

Coding Style D-n°ﬁculty of qu.eue
implementation

Sequential code Undergraduate

Locks & Conditions Major publishable result*

*Simple, fast, and practical non-blocking and blocking concurrent queue algorithms
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What we have What we want

Locks and Conditions: Hard to use & Don’t compose

Q

@ g
\:\QL / /e ary \_'\‘O(a(\‘
bran) A
Library \° Liby, ry
ariables

Locks and condition Vv

Hardware

Libraries Build Layered Concurrency Abstractions

Library

Library Library

Library

Library Library Library

Concurrency primitives

Hardware
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Idea: Replace locks with atomic blocks Locks are absurdly hard to get right

Atomic Blocks/STM: Easy to use & Do compose

Difficulty of queue

Library Coding Style _ _
: implementation
Library )
. Library Sequential code Undergraduate
Library
Library Library Library Locks & Conditions Major publishable result*

Atomic Blocks:

) Atomic blocks(STM) Undergraduate
atomic, retry, orElse

Hardware

*Simple, fast, and practical non-blocking and blocking concurrent queue algorithms
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Atomic Memory Transactions Atomic Memory Transactions
Wabase transactions ] ‘%Acm}cabase transactions ]

atomic {...sequential code...} atomic {...sequential code...}

Wrap atomic around sequential code Atomic Block Executes in Isolation

All-or-nothing semantics: atomic commit No Data Race Conditions!
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Atomic Memory Transactions

How it Works

l cf “ACID” database transactions ]

atomic {...sequential code...}

There Are No Locks
Hence, no deadlocks!

atomic {...sequential code...}

Optimistic Concurrency

Execute code without any locks.

read y
read z
write 10 x
write 42 z

Record reads/writes in thread-local transaction
Writes go to the log only, not to memory.

At the end, transaction validates the log
If valid, atomically commit changes to memory

If invalid, re-run from start, discarding changes
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Why it Doesn’t Work...

atomic {...sequential code...}

Logging Memory Effects is Expensive
Huge slowdown on memory read/write

Cannot “Re-Run”, Arbitrary Effects
How to “retract” email?

How to “un-launch” missile?

STM in Haskell
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Haskell Fits the STM Shoe

Haskellers brutally trained from birth
to use memory/I0 effects sparingly!

Issue: Logging Memory Is Expensive

Haskell already partitions world into
Immutable values (zillions and zillions)
Mutable locations (very few)

Solution: Only log mutable locations!
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Issue: Logging Memory Is Expensive

Haskell already paid the bill!
Reading and Writing locations are
Expensive function calls

Logging Overhead
Lower than in imperative languages

Issue: Undoing Arbitrary 10

Types control where 10 effects happen
Easy to keep them out of transactions

Monads Ideal For Building Transactions
Implicitly (invisibly) passing logs
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Tracking Effects with Types

main = do { putStr (reverse “yes”);
putStr “no”

Mutable State
Concurrency

Synchronization
STM/Atomic Blocks

(reverse “yes”) :: String -- No effects
(putStr “no” 10 I0 () -- Effects okay

& W IN =

Main program is a computation with effects

[main :: 10 () |
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Mutable State via the |O Monad Mutable State via the IO Monad

main = do r <- newIORef ©

newRef :: a -> IO (IORef a) incR r
readRef :: IORef a -> IO a s <- readIORef r
writeRef :: IORef a -> a -> I0 () PEENEES

incR :: IORef Int -> IO ()
incR = do v <- readIORef r
writeIORef r (v+1)

Reads and Writes are 100% Explicit
(r+6) isrejectedas r :: IORef Int

newRef :: a -> I0 (IORef a)
readRef :: IORef a -> IO a
writeRef :: IORef a -> a -> IO ()
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Concurrency in Haskell

forkIO function spawns a thread

1. Mutable State
2. Concurrency

3. Synchronization
4. STM/Atomic Blocks

Concurrency in Haskell
Data Race
main = do r <- newIORef © %—J 1' MUtabIe State
forkIO $ incR r

Takes an 10 action as argument

forkIO :: IO a -> IO Threadld

prant s 2. Concurrency
e 3. Synchronization

4. STM/Atomic Blocks

newRef :: a -> I0 (IORef a)
readRef :: IORef a -> I0 a
writeRef :: IORef a -> a -> I0 ()
forkIO :: IORef a -> IO ThreadId




Atomic Blocks in Haskell

1. Mutable State
2. Concurrency

gOtO COde 3. Synchronization

4. STM/Atomic Blocks

Tuesday, March 5, 2013

Atomic Blocks in Haskell Atomic Blocks in Haskell

atomically :: IO a -> IO a atomically :: IO a -> IO a
atomically act main = do r <- newRef ©
. - . forkIO $ atomically $ incR r
Executes ‘act™ atomically atomically $ incR r

atomic Ensures No Data Races!




Atomic Blocks in Haskell A Better Type for Atomic

STM = Trans-actions

Data Race , , ,
Tvar =Imperative transaction variables
main = do r <- newRef © atomic :: STM a -> I0 a
forkIO $ incR r newTVar :: a -> STM (TVar a)
atomically $ incR r readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

What if we use incR outside block? . .
Types ensure Tvar only touched in STM action

Yikes! Races in code inside & outside!
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Type System Guarantees Type System Guarantees

. Outside Atomic Block
You cannot forget atomically Can't fiddle with TVars

Only way to execute STM action

incT :: Tvar Int -> STM () Inside Atomic Block

incT r = do v <- readVar r Can’t do 10, Can’t manipulate imperative variables
writeTVar r (v+1)

main = do r <- atomically $ newTvar @ TVar atomic $ if X<y then launchMissiles
forkIO $ atomically $ incT r

atomically $ incT r
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Type System Guarantees (Unlike Locks) STM Actions Compose!

incT :: TVar Int -> STM ()
incT r = do v <- readTVar r
writeTVar r (v+1)

Note: atomically is a function incT2 :: Tvar Int -> STM ()
incT2 r = do {incT r; incT r}
I 1 foo :: IO
not a special syntactic construct e U

...and, so, best of all... Glue STM Actions Arbitrarily

Wrap with atomic to get an IO action
Types ensure STM action is atomic
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STM Type Supports Exceptions

throw :: Exception -> STM a
catch :: STM a ->(Exception->STM a)-> STM a

No need to restore invariants, or release locks! Tra nsa Ction CO m bi nato s

In "atomically act'if "act’ throws exception:

1. Transaction is aborted with no effect,
2. Exception is propagated to enclosing 10 code*

*Composable Memory Transactions
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#1 retry: Compositional Blocking #1 retry: Compositional Blocking

retry

STM ()

retry

STM ()

“Abort current transaction & re-execute from start” Implementation Avoids Busy Waiting

Uses logged reads to block till a read-var (eg. acc) changes

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)
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#1 retry: Compositional Blocking #1 retry: Compositional Blocking

retry :: STM () retry :: STM ()

No Condition Variables! No Condition Variables!

Uses logged reads to block till a read-var (eg. acc) changes No danger of forgetting to test conditions

Retrying thread is woken on write, so no forgotten notifies On waking as transaction runs from the start.

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)
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Hoisting Guards Is Not Compositional

Why is retry Compositional?

Can appear anywhere in an STM Transaction
Nested arbitrarily deeply inside a call

atomic $ do withdraw al 3
withdraw a2 7

Waits untill 'al>3" AND "a2>7"
Without changing/knowing ‘'withdraw' code

atomic (al>3 && a2>7)
{ ...stuff...

}

Breaks abstraction of “...stuff...”
Need to know code to expose guards
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#2 orElse: Choice

How to transfer $3 from al or a2 to b?

l Try this... I [...and if it retries, try this
atomically $ do withdraw al 3 orelse’ withdraw a2 3

deposit b 3

[f\.aﬁd then do this ]

STM a -> STM a -> STM a

orElse

Choice Is Composable Too!

transfer al a2 b = do withdraw al 3 orElse’ withdraw a2 3
deposit b 3

atomically $ transfer al a2 b
“orElse”
transfer a3 a4 b

transfer calls orElse

But calls to it can be composed with orElse
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Transaction Invariants

Assumed on Entry, Verified on Exit
Ensuring Correctness of Concurrent Accesses?

e.g. account should never go below 0 Only Tested If Invariant’s TVar changes
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#3 always: Enforce Invariants #3 always: Enforce Invariants

always :: STM Bool -> STM () always :: STM Bool -> STM ()
checkBal :: TVar Int -> STM Bool
checkBal v = do cts <- readTVar v

Adds a new invariant to a global pool

return (v > @) An arbitrary
boolean valued Conceptually, all invariants checked on all commits
newAccount :: STM (TVar Int) STM action

do v <- newTVar 0

always $ checkBal v . .
petu.)«/n v Implementation Checks Relevant Invariants

newAccount

That read TVars written by the transaction
Every Transaction that touches acct will check invariant

If the check fails, the transaction restarts
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Recap: Composing Transactions Complete Implementation in GHC6

A transaction is a value of type STM a Performance is similar to Shared-Var

Transactions are first-class values Need more experience using STM in practice...
Big Tx By Composing Little Tx You can play with it*
sequence, choice, block ... Final will have some STM material ©

* Beautiful Concurrency

To Execute, Seal The Transaction
atomically :: STM a -> I0 a
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STM in Mainstream Languages Mainstream Types Don’t Control Effects

Proposals for adding STM to Java etc.

SIS ARG & So Code Inside Tx Can Conflict with Code Outside!
float balance;
void deposit(float amt) {

atomic { balance += amt; } Weak Atomicity
} . . .
void withdraw(float amt) { Outside code sees inconsistent memory
atomic { . . .
if(balance < amt) throw new OutOfMoneyError(); Avoid by placmg all shared mem access in Tx
balance -= amt; }
}
void transfer(Acct other, float amt) { Strong Atomicity
atomic { // Can compose withdraw and deposit. . . ]
other.withdraw(amt); Outside code guaranteed consistent memory view
this.d it(amt); : :
) 1s.deposit(amt); } Causes big performance hit

}
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A Monadic Skin Conclusions

STM raises abstraction for concurrent programming
Think high-level language vs assembly code
Whole classes of low-level errors are eliminated.

In C/Java, 10 is Everywhere
No need for special type, all code is in “I10 monad”

Haskell Gives You A Choice

When to be in 10 monad vs when to be purely functional But not a silver bullet!

Can still write buggy programs

Haskell Can Be Imperative BUT C/Java Cannot Be Pure! Concurrent code still harder than sequential code
Mainstream PLs lack a statically visible pure subset Only for shared memory, not message passing
The separation facilitates concurrent programming... There is a performance hit

But it seems acceptable, and things can only get better...
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Mutable State via the |O Monad

do r <- newIORef ©
incR r
S <- readIORef r
print s

:: IORef Int -> IO ()
do v <- readIORef r
writeIORef r (v+1)

newRef :: a -> I0 (IORef a)
readRef :: IORef a -> IO a
writeRef :: IORef a -> a -> IO ()
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