The Grand Challenge
How to properly use multi-cores?

Concu rrency: STM Need new programming models!

Slides due to: Kathleen Fisher, Simon Peyton Jones, Satnam Singh, Don Stewart

Tuesday, March 5, 2013 1 Tuesday, March 5, 2013 2

Parallelism vs Concurrency Concurrent Programming

* A parallel program exploits real parallel
computing resources to run faster while
computing the same answer.

— Expectation of genuinely simultaneous execution

Essential For Multicore Performance

— Deterministic

* A concurrent program models independent
agents that can communicate and synchronize.
— Meaningful on a machine with one processor

— Non-deterministic

Tuesday, March 5, 2013 3 Tuesday, March 5, 2013 4

Concurrent Programming What’s Wrong With Locks?

Races
State-of-the-art is 30 years old! Forgotten locks lead to inconsistent views
Locks and condition variables Deadlock

Java: synchronized, wait, notify Locks acquired in “wrong” order

Lost Wakeups
Locks etc. Fundamentally Flawed

W o1 o Forgotten notify to condition variables
Building a sky-scraper out of matchsticks

Diabolical Error recovery

Tuesday, March 5, 2013 5 Tuesday, March 5, 2013 6

Even Worse! Locks Don’t Compose Even Worse! Locks Don’t Compose

class Account{ 1st Attempt transfer =withdrawthen deposit
float balance;

class Account{

. . . float balance;
syggggﬁzézig ;z%? deposit(float amt) { synchronized void deposit(float amt) {
} balance += amt;

}
synchronized void withdraw(float amt) { synchronized void withdraw(float amt) {
if (balance < amt)

if(balance < amt)
throw new OutOfMoneyError(); throw new OutOfMoneyError();

balance -= amt; } balance -= amt;

} } void transfer(Acct other, float amt) {
other.withdraw(amt);
this.deposit(amt);}

A Correct bank Account class)

Write code to transfer funds between accounts

Tuesday, March 5, 2013 7 Tuesday, March 5, 2013 8

Even Worse! Locks Don’t Compose

Even Worse! Locks Don’t Compose

1st Attempt transfer =withdrawthen deposit

class Account{

float balance;

synchronized void deposit(float amt) {
balance += amt;

}

synchronized void withdraw(float amt) {
if(balance < amt)

throw new OutOfMoneyError();

balance -= amt;

void transfer(Acct other, float amt) {
other.withdraw(amt);

this.deposit(amt);}
} \

\
[Race Condition Wrong sum of balances]

2t Attempt: synchronized transfer

class Account{

float balance;

synchronized void deposit(float amt){
balance += amt;

}

synchronized void withdraw(float amt){
if(balance < amt)

throw new OutOfMoneyError();

balance -= amt;

}

synchronized void transfer(Acct other, float amt){
other.withdraw(amt);
this.deposit(amt);}

Tuesday, March 5, 2013

Even Worse! Locks Don’t Compose

9 Tuesday, March 5, 2013 10

Locks are absurdly hard to get right

2t Attempt: synchronized transfer

class Account{

float balance;

synchronized void deposit(float amt){
balance += amt;

}

synchronized void withdraw(float amt){
if(balance < amt)

throw new OutOfMoneyError();

balance -= amt;

}

synchronized void transfer(Acct other, float amt){

other.withdraw(amt);
this.deposit(amt);}
}

A\

[Deadlocks with Concurrent reverse transfer]

Scalable double-ended queue: one lock per cell

% 2

If ends “far” apart

But watch out!
If queue is 0, 1, or 2 elements long

Tuesday, March 5, 2013

11 Tuesday, March 5, 2013 12

Locks are absurdly hard to get right

Locks are absurdly hard to get right

Difficulty of queue
implementation

Coding Style

Sequential code Undergraduate

Coding Style D-n°ﬁculty of qu.eue
implementation

Sequential code Undergraduate

Locks & Conditions Major publishable result*

*Simple, fast, and practical non-blocking and blocking concurrent queue algorithms

Tuesday, March 5, 2013

13 Tuesday, March 5, 2013 14

What we have What we want

Locks and Conditions: Hard to use & Don’t compose

Q

@ g
\:\QL / /e ary _'\‘O(a(\‘
bran) A
Library \° Liby, ry
ariables

Locks and condition Vv

Hardware

Libraries Build Layered Concurrency Abstractions

Library

Library Library

Library

Library Library Library

Concurrency primitives

Hardware

Tuesday, March 5, 2013

15 Tuesday, March 5, 2013 16

Idea: Replace locks with atomic blocks Locks are absurdly hard to get right

Atomic Blocks/STM: Easy to use & Do compose

Difficulty of queue

Library Coding Style _ _
: implementation
Library)
. Library Sequential code Undergraduate
Library
Library Library Library Locks & Conditions Major publishable result*

Atomic Blocks:

) Atomic blocks(STM) Undergraduate
atomic, retry, orElse

Hardware

*Simple, fast, and practical non-blocking and blocking concurrent queue algorithms

Tuesday, March 5, 2013 17 Tuesday, March 5, 2013 18

Atomic Memory Transactions Atomic Memory Transactions
Wabase transactions] ‘%Acm}cabase transactions]

atomic {...sequential code...} atomic {...sequential code...}

Wrap atomic around sequential code Atomic Block Executes in Isolation

All-or-nothing semantics: atomic commit No Data Race Conditions!

Tuesday, March 5, 2013 19 Tuesday, March 5, 2013 20

Atomic Memory Transactions

How it Works

l cf “ACID” database transactions]

atomic {...sequential code...}

There Are No Locks
Hence, no deadlocks!

atomic {...sequential code...}

Optimistic Concurrency

Execute code without any locks.

read y
read z
write 10 x
write 42 z

Record reads/writes in thread-local transaction
Writes go to the log only, not to memory.

At the end, transaction validates the log
If valid, atomically commit changes to memory

If invalid, re-run from start, discarding changes

Tuesday, March 5, 2013 21 Tuesday, March 5, 2013 22

Why it Doesn’t Work...

atomic {...sequential code...}

Logging Memory Effects is Expensive
Huge slowdown on memory read/write

Cannot “Re-Run”, Arbitrary Effects
How to “retract” email?

How to “un-launch” missile?

STM in Haskell

Tuesday, March 5, 2013 23 Tuesday, March 5, 2013 24

Haskell Fits the STM Shoe

Haskellers brutally trained from birth
to use memory/I0 effects sparingly!

Issue: Logging Memory Is Expensive

Haskell already partitions world into
Immutable values (zillions and zillions)
Mutable locations (very few)

Solution: Only log mutable locations!

Tuesday, March 5, 2013

25 Tuesday, March 5, 2013 26

Issue: Logging Memory Is Expensive

Haskell already paid the bill!
Reading and Writing locations are
Expensive function calls

Logging Overhead
Lower than in imperative languages

Issue: Undoing Arbitrary 10

Types control where 10 effects happen
Easy to keep them out of transactions

Monads Ideal For Building Transactions
Implicitly (invisibly) passing logs

Tuesday, March 5, 2013

27 Tuesday, March 5, 2013 28

Tracking Effects with Types

main = do { putStr (reverse “yes”);
putStr “no”

Mutable State
Concurrency

Synchronization
STM/Atomic Blocks

(reverse “yes”) :: String -- No effects
(putStr “no” 10 I0 () -- Effects okay

& W IN =

Main program is a computation with effects

[main :: 10 () |

Tuesday, March 5, 2013 29 Tuesday, March 5, 2013 30

Mutable State via the |O Monad Mutable State via the IO Monad

main = do r <- newIORef ©

newRef :: a -> IO (IORef a) incR r
readRef :: IORef a -> IO a s <- readIORef r
writeRef :: IORef a -> a -> I0 () PEENEES

incR :: IORef Int -> IO ()
incR = do v <- readIORef r
writeIORef r (v+1)

Reads and Writes are 100% Explicit
(r+6) isrejectedas r :: IORef Int

newRef :: a -> I0 (IORef a)
readRef :: IORef a -> IO a
writeRef :: IORef a -> a -> IO ()

Tuesday, March 5, 2013 31 Tuesday, March 5, 2013 32

Concurrency in Haskell

forkIO function spawns a thread

1. Mutable State
2. Concurrency

3. Synchronization
4. STM/Atomic Blocks

Concurrency in Haskell
Data Race
main = do r <- newIORef © %—J 1' MUtabIe State
forkIO $ incR r

Takes an 10 action as argument

forkIO :: IO a -> IO Threadld

prant s 2. Concurrency
e 3. Synchronization

4. STM/Atomic Blocks

newRef :: a -> I0 (IORef a)
readRef :: IORef a -> I0 a
writeRef :: IORef a -> a -> I0 ()
forkIO :: IORef a -> IO ThreadId

Atomic Blocks in Haskell

1. Mutable State
2. Concurrency

gOtO COde 3. Synchronization

4. STM/Atomic Blocks

Tuesday, March 5, 2013

Atomic Blocks in Haskell Atomic Blocks in Haskell

atomically :: IO a -> IO a atomically :: IO a -> IO a
atomically act main = do r <- newRef ©
. - . forkIO $ atomically $ incR r
Executes ‘act™ atomically atomically $ incR r

atomic Ensures No Data Races!

Atomic Blocks in Haskell A Better Type for Atomic

STM = Trans-actions

Data Race , , ,
Tvar =Imperative transaction variables
main = do r <- newRef © atomic :: STM a -> I0 a
forkIO $ incR r newTVar :: a -> STM (TVar a)
atomically $ incR r readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

What if we use incR outside block? . .
Types ensure Tvar only touched in STM action

Yikes! Races in code inside & outside!

Tuesday, March 5, 2013

41 Tuesday, March 5, 2013 42

Type System Guarantees Type System Guarantees

. Outside Atomic Block
You cannot forget atomically Can't fiddle with TVars

Only way to execute STM action

incT :: Tvar Int -> STM () Inside Atomic Block

incT r = do v <- readVar r Can’t do 10, Can’t manipulate imperative variables
writeTVar r (v+1)

main = do r <- atomically $ newTvar @ TVar atomic $ if X<y then launchMissiles
forkIO $ atomically $ incT r

atomically $ incT r

Tuesday, March 5, 2013 43 Tuesday, March 5, 2013 44

Type System Guarantees (Unlike Locks) STM Actions Compose!

incT :: TVar Int -> STM ()
incT r = do v <- readTVar r
writeTVar r (v+1)

Note: atomically is a function incT2 :: Tvar Int -> STM ()
incT2 r = do {incT r; incT r}
I 1 foo :: IO
not a special syntactic construct e U

...and, so, best of all... Glue STM Actions Arbitrarily

Wrap with atomic to get an IO action
Types ensure STM action is atomic

Tuesday, March 5, 2013 45 Tuesday, March 5, 2013 46

STM Type Supports Exceptions

throw :: Exception -> STM a
catch :: STM a ->(Exception->STM a)-> STM a

No need to restore invariants, or release locks! Tra nsa Ction CO m bi nato s

In "atomically act'if "act’ throws exception:

1. Transaction is aborted with no effect,
2. Exception is propagated to enclosing 10 code*

*Composable Memory Transactions

Tuesday, March 5, 2013 47 Tuesday, March 5, 2013 48

#1 retry: Compositional Blocking #1 retry: Compositional Blocking

retry

STM ()

retry

STM ()

“Abort current transaction & re-execute from start” Implementation Avoids Busy Waiting

Uses logged reads to block till a read-var (eg. acc) changes

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)

Tuesday, March 5, 2013 49 Tuesday, March 5, 2013 50

#1 retry: Compositional Blocking #1 retry: Compositional Blocking

retry :: STM () retry :: STM ()

No Condition Variables! No Condition Variables!

Uses logged reads to block till a read-var (eg. acc) changes No danger of forgetting to test conditions

Retrying thread is woken on write, so no forgotten notifies On waking as transaction runs from the start.

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)

withdraw :: TVar Int -> Int -> STM ()

withdraw acc n = do bal <- readTVar acc
if bal < n then retry
writeTVar acc (bal-n)

Tuesday, March 5, 2013 51 Tuesday, March 5, 2013 52

Hoisting Guards Is Not Compositional

Why is retry Compositional?

Can appear anywhere in an STM Transaction
Nested arbitrarily deeply inside a call

atomic $ do withdraw al 3
withdraw a2 7

Waits untill 'al>3" AND "a2>7"
Without changing/knowing ‘'withdraw' code

atomic (al>3 && a2>7)
{ ...stuff...

}

Breaks abstraction of “...stuff...”
Need to know code to expose guards

Tuesday, March 5, 2013

53 Tuesday, March 5, 2013 54

#2 orElse: Choice

How to transfer $3 from al or a2 to b?

l Try this... I [...and if it retries, try this
atomically $ do withdraw al 3 orelse’ withdraw a2 3

deposit b 3

[f\.aﬁd then do this]

STM a -> STM a -> STM a

orElse

Choice Is Composable Too!

transfer al a2 b = do withdraw al 3 orElse’ withdraw a2 3
deposit b 3

atomically $ transfer al a2 b
“orElse”
transfer a3 a4 b

transfer calls orElse

But calls to it can be composed with orElse

Tuesday, March 5, 2013

55 Tuesday, March 5, 2013 56

Transaction Invariants

Assumed on Entry, Verified on Exit
Ensuring Correctness of Concurrent Accesses?

e.g. account should never go below 0 Only Tested If Invariant’s TVar changes

Tuesday, March 5, 2013 57 Tuesday, March 5, 2013 58

#3 always: Enforce Invariants #3 always: Enforce Invariants

always :: STM Bool -> STM () always :: STM Bool -> STM ()
checkBal :: TVar Int -> STM Bool
checkBal v = do cts <- readTVar v

Adds a new invariant to a global pool

return (v > @) An arbitrary
boolean valued Conceptually, all invariants checked on all commits
newAccount :: STM (TVar Int) STM action

do v <- newTVar 0

always $ checkBal v . .
petu.)«/n v Implementation Checks Relevant Invariants

newAccount

That read TVars written by the transaction
Every Transaction that touches acct will check invariant

If the check fails, the transaction restarts

Tuesday, March 5, 2013 59 Tuesday, March 5, 2013 60

Recap: Composing Transactions Complete Implementation in GHC6

A transaction is a value of type STM a Performance is similar to Shared-Var

Transactions are first-class values Need more experience using STM in practice...
Big Tx By Composing Little Tx You can play with it*
sequence, choice, block ... Final will have some STM material ©

* Beautiful Concurrency

To Execute, Seal The Transaction
atomically :: STM a -> I0 a

Tuesday, March 5, 2013 61 Tuesday, March 5, 2013 62

STM in Mainstream Languages Mainstream Types Don’t Control Effects

Proposals for adding STM to Java etc.

SIS ARG & So Code Inside Tx Can Conflict with Code Outside!
float balance;
void deposit(float amt) {

atomic { balance += amt; } Weak Atomicity
} . . .
void withdraw(float amt) { Outside code sees inconsistent memory
atomic { . . .
if(balance < amt) throw new OutOfMoneyError(); Avoid by placmg all shared mem access in Tx
balance -= amt; }
}
void transfer(Acct other, float amt) { Strong Atomicity
atomic { // Can compose withdraw and deposit. . .]
other.withdraw(amt); Outside code guaranteed consistent memory view
this.d it(amt); : :
) 1s.deposit(amt); } Causes big performance hit

}

Tuesday, March 5, 2013 63 Tuesday, March 5, 2013 64

A Monadic Skin Conclusions

STM raises abstraction for concurrent programming
Think high-level language vs assembly code
Whole classes of low-level errors are eliminated.

In C/Java, 10 is Everywhere
No need for special type, all code is in “I10 monad”

Haskell Gives You A Choice

When to be in 10 monad vs when to be purely functional But not a silver bullet!

Can still write buggy programs

Haskell Can Be Imperative BUT C/Java Cannot Be Pure! Concurrent code still harder than sequential code
Mainstream PLs lack a statically visible pure subset Only for shared memory, not message passing
The separation facilitates concurrent programming... There is a performance hit

But it seems acceptable, and things can only get better...

Tuesday, March 5, 2013 65 Tuesday, March 5, 2013 66

Mutable State via the |O Monad

do r <- newIORef ©
incR r
S <- readIORef r
print s

:: IORef Int -> IO ()
do v <- readIORef r
writeIORef r (v+1)

newRef :: a -> I0 (IORef a)
readRef :: IORef a -> IO a
writeRef :: IORef a -> a -> IO ()

Tuesday, March 5, 2013 67

