
CSE 230: Medium of Instruction

HaskellHaskell

What is Haskell? What is Haskell?

Programming in Haskell

“Computation by Calculation”

Programming in Haskell

“Substitute Equals by Equals”

Substituting Equals

3 * (4 + 5)

3 * 93 * 9

27

That’s it!

What is Abstraction?

Pattern RecognitionPattern Recognition

Pattern Recognition

31 * (42 + 56)

x * (y + z)pat x y z =

pat 31 42 56 = 31 * (42 + 56)

70 * (12 + 95)

90 * (68 + 12)

pat 31 42 56 =

pat 70 12 95 =

pat 90 68 12 =

Pattern Application: “Fun Call”

x * (y + z)pat x y z =

pat 31 42 56

31 * (42 + 56)

31 * 98

3038

Programming in Haskell

“Substitute Equals by Equals”

Really, that’s it!

Elements of Haskell

Expressions, Values, Types

ExpressionsExpressions

ValuesValues

TypesTypes

expression :: Type

value :: Type

The GHC System

Batch Compiler “ghc”

Compile & Run Large Programs

Interactive Shell “ghci”

Tinker with Small Programs

Interactive Shell: ghci

:load foo.hs

:type expression:type expression

:info variable

Basic Types

Integer31 * (42 + 56) ::

Double3 * (4.2 + 5.6) ::

Char‘a’ ::

Note: + and * overloaded …

BoolTrue ::

Function Types

Function taking input of A, yielding output of B

A -> B

Function taking input of A, yielding output of B

pos x = (x > 0)

pos :: Integer -> Bool

“Multi-Argument” Function Types

A1 -> A2 -> A3 -> B

Function taking args of A1, A2, A3, giving out B

pat x y z = x * (y + z)

pat :: Int -> Int -> Int -> Bool

Tuples

Bounded Sequence of values of type A1,…,An

(A1,…,An)

Bounded Sequence of values of type A1,…,An

(‘a’, 5) :: (Char, Int)

(‘a’, 5.2, 7) :: (Char, Double, Int)

((7, 5.2), True) ::

Extracting Values From Tuples

Pattern Matching extracts values from tuple

(A1,A2,…,An)

pat x y z = x * (y + z)

pat :: Int -> Int -> Int -> Bool

pat’ (x, y, z) = x * (y + z)

pat’ :: (Int, Int, Int) -> Int

Lists

Unbounded Sequence of values of types A

[A]

[‘a’,‘b’,‘c’] :: [Char]

[1,3,5,7] :: [Integer]

[(1,True),(2,False)] :: [(Integer,Bool)]

[[1],[2,3],[4,5,6]] :: [[Integer]]

List’s Values Must Have Same Type

Unbounded Sequence of values of types A

[A]

[1, 2, ‘c’]

What is A ?

List’s Values Must Have Same Type

Unbounded Sequence of values of types A

[A]

[1, 2, ‘c’]

(Mysterious) Type Error!

“Cons”tructing Lists

Input: element (“head”) and list (“tail”)

Output: new list with head followed by tail

:(:) :: a -> [a] -> [a]

Output: new list with head followed by tail

‘a’:[‘b’,‘c’] [‘a’,‘b’,‘c’]

1:[] [1]

[]:[]

“Cons”tructing Lists

cons2 x y zs = x:y:zs

cons2 ::

cons2 ‘a’ ‘b’ [‘c’] [‘a’,‘b’,‘c’]

cons2 1 2 [3,4,5,6] [1,2,3,4,5,6]

Syntactic Sugar

[x1,x2,…,xn]

Is actually a pretty way of writingIs actually a pretty way of writing

x1:x2:…:xn:[]

Function Practice : List Generation

clone x n =

clone :: a -> Int -> [a]

if n==0
then []
else x:(clone x (n-1))else x:(clone x (n-1))

clone ‘a’ 4 [‘a’,‘a’,‘a’,‘a’]

clone 1.1 3 [1.1, 1.1,1.1]

Function Practice : List Generation

clone x 0 =

clone :: a -> Int -> [a]

[]

clone x n = x:(clone x (n-1))

Define with multiple equations

More Readable

Function Practice : List Generation

clone x 0 =

clone :: a -> Int -> [a]

[]

clone x n = x:(clone x (n-1))

clone ‘a’ 3

‘a’:(clone ‘a’ 2)

[‘a’,‘a’,‘a’]

‘a’:(‘a’:(clone ‘a’ 1))
‘a’:(‘a’:(‘a’:(clone ‘a’ 0)))
‘a’:(‘a’:(‘a’:([])))

Function Practice : List Generation

clone x 0 =

clone :: a -> Int -> [a]

[]

clone x n = x:(clone x (n-1))

Ugly, Complex Expression

Function Practice : List Generation

clone x 0 =

clone :: a -> Int -> [a]

[]

clone x n = let tl = clone x (n-1)
in x:tlin x:tl

Define with local variables

More Readable

Function Practice : List Generation

clone x 0 =

clone :: a -> Int -> [a]

[]

clone x n = x:tl
where tl = clone x (n-1)where tl = clone x (n-1)

Define with local variables

More Readable

Function Practice : List Generation

range i j =

range :: Int -> Int -> [Int]

if i<=j
then [] then []
else i:(range (i+1) j)

range 2 8 [2,3,4,5,6,7,8]

Function Practice : List Generation

range i j

range :: Int -> Int -> [Int]

| i<=j = []
| True = i:(range (i+1) j)

Define with multiple guards

More Readable

| True = i:(range (i+1) j)

Function Practice : List Access

listAdd :: [Integer] -> Integer

listAdd [2,3,4,5,6] 20

listAdd [] = 0

Access elements By Pattern Matching

listAdd (x:xs) = x + listAdd xs

Recap

Execution = Substitute Equals

Expressions, Values, TypesExpressions, Values, Types

Base Vals, Tuples, Lists, Functions

Next: Creating TypesNext: Creating Types

Type Synonyms

Names for Compound Types

type XY = (Double, Double)

Not a new type, just shorthand

type XY = (Double, Double)

Type Synonyms

Write types to represent:

Circle : x-coord, y-coord, radius
type Circle = (Double, Double, Double)

Circle : x-coord, y-coord, radius

Square: x-coord, y-coord, side
type Square = (Double, Double, Double)

Type Synonyms

Bug Alarm!

Call areaSquare on circle, get back junk

type Circle = (Double, Double, Double)

type Square = (Double, Double, Double)

areaCircle (_,_,r) = pi * r * r

areaSquare (_,_,d) = d * d

Solution: New Data Type

data CircleT = Circle (Double,Double,Double)

data SquareT = Square (Double,Double,Double)

Creates New TypesCreates New Types

CircleT

SquareT

Solution: New Data Type

data CircleT = Circle (Double,Double,Double)

data SquareT = Square (Double,Double,Double)

Creates New ConstructorsCreates New Constructors

Circle :: (Double,Double,Double) -> CircleT

Square :: (Double,Double,Double) -> SquareT

Only way to create values of new type

Solution: New Data Type

data CircleT = Circle (Double,Double,Double)

data SquareT = Square (Double,Double,Double)

Creates New ConstructorsCreates New Constructors

Circle :: (Double,Double,Double) -> CircleT

Square :: (Double,Double,Double) -> SquareT

How to access/deconstruct values?

Deconstructing Data

areaSquare :: CircleT -> Double
areaCircle (Circle(_,_,r)) = pi * r * r

How to access/deconstruct values?

Pattern Match…!

areaSquare :: SquareT -> Double
areaSquare (Square(_,_,d)) = d * d

Deconstructing Data

areaSquare :: CircleT -> Double
areaCircle (Circle(_,_,r)) = pi * r * r

Call areaSquare on CircleT ?

Different Types: GHC catches bug!

areaSquare :: SquareT -> Double
areaSquare (Square(_,_,d)) = d * d

How to build a list with squares & circles?

Restriction: List elements have same type!Restriction: List elements have same type!

How to build a list with squares & circles?

Solution: Create a type to represent both! Solution: Create a type to represent both!

Variant (aka Union) Types

Create a type to represent both!

data CorS =
| Circle (Double,Double,Double)| Circle (Double,Double,Double)
| Square (Double,Double,Double)

[Circle(1,1,1),Square(2,3,4)] :: [CorS]

Circle(1,1,1) :: CorS

Square(2,3,4) :: CorS

Variant (aka Union) Types

Access/Deconstruct by Pattern Match

data CorS =
| Circle (Double,Double,Double)| Circle (Double,Double,Double)
| Square (Double,Double,Double)

area :: CorS -> Double
area (Circle(_,_,r)) = pi*r*r
area (Square(_,_,d)) = d*d

A Richer Shape

data Shape =
| Rectangle (Double, Double)
| Ellipse (Double, Double)| Ellipse (Double, Double)
| RtTriangle(Double, Double)
| Polygon [(Double, Double)]

Lets drop the parens...

A Richer Shape

data Shape =
| Rectangle Double Double
| Ellipse Double Double| Ellipse Double Double
| RtTriangle Double Double
| Polygon [(Double, Double)]

Lets drop the parens...

A Richer Shape

data Shape =
| Rectangle Double Double
| Ellipse Double Double| Ellipse Double Double
| RtTriangle Double Double
| Polygon [(Double, Double)]

Why can’t we drop last case’s parens?

Making Shape Readable

data Shape =
| Rectangle Side Side
| Ellipse Radius Radius| Ellipse Radius Radius
| RtTriangle Side Side
| Polygon [Vertex]

type Side = Double
type Radius = Double
type Vertex = (Double, Double)

Calculating The Area

area :: Shape -> Double
area (Rectangle l b) = l*b
area (RtTriangle b h) = b*h/2
area (Ellipse r1 r2) = pi*r1*r2area (Ellipse r1 r2) = pi*r1*r2

GHC warns about missing case!

Calculating Area of Polygon

v1

v2 v3

v4 =
v1

v2
v3

+
v1

v5

=
v1 v4

v5
area (Polygon (v1:v2:v3:vs))

= triArea v1 v2 v3 + area (Polygon (v1:v3:vs))
area (Polygon _)

= 0

“Hello World”

Input/Output in Haskell

Programs Interact With The World

(Don’t just compute values!)(Don’t just compute values!)

Programs Interact With The World

Read files, Read files,

Display graphics,

Broadcast packets, …

Programs Interact With The World

How to fit w/ values & calculation ?How to fit w/ values & calculation ?

I/O via an “Action” Value

Action

Value describing an effect on world

IO a

Type of an action that returns an a

Example: Output Action

Just do something, return nothing

putStr :: String -> IO ()putStr :: String -> IO ()

takes input string, returns action

that writes string to stdout

Example: Output Action

Only one way to “execute” action

make it the value of name mainmake it the value of name main

main :: IO ()

main = putStr “Hello World! \n”

Example: Output Action

Compile and Run

ghc -o hello helloworld.hs

main :: IO ()

main = putStr “Hello World! \n”

Example: Output Action

“Execute” in ghci

:load helloworld.hs

main :: IO ()

main = putStr “Hello World! \n”

Actions Just Describe Effects

Writing does not trigger Execution

act2 :: (IO (), IO ())act2 :: (IO (), IO ())

act2 = (putStr “Hello”, putStr “World”)

Just creates a pair of actions…

main :: IO ()

How to do many actions?How to do many actions?

main :: IO ()

By composing small actions By composing small actions

Just “do” it

do putStr “Hello”

putStr “World”

putStr “\n”putStr “\n”

Single Action

“Sequence” of sub-actions

Just “do” it

do act1

act2

…

actnactn

Single Action

“Sequence” of sub-actions

Just “do” it

do act1

act2

…

actnactn

Block Begin/End via Indentation

“Offside Rule” (Ch3. RWH)

Example: Input Action

Action that returns a value

getLine :: IO StringgetLine :: IO String

Read and Return Line from StdIn

Example: Input Action

Name result via “assignment”

x <- actx <- act

x refers to result in later code

Example: Input Action

Name result via “assignment”

main :: IO ()main :: IO ()
main = do putStr “What is your name?”

n <- getLine

putStrLn (“Happy New Year ” ++ n)

