CSE 230: Medium of Instruction

= Haskell

What is Haskell?

Programming in Haskell

“Computation by Calculation”

Programming in Haskell

“Substitute Equals by Equals”

Substituting Equals

3 * (4 +5)

That’s it!

What is Abstraction?
Pattern Recognition

Pattern Recognition

pat X y z

pat 31 42 56

pat 70 12 95

pat 90 68 12

X *¥ (y +2z)

31 * (42 + 56)
70 * (12 + 95)

90 * (68 + 12)

Pattern Application: “Fun Call”

pat xyz = x* (y +2z)

pat 31 42 56

"

31 * (42 + 56)

"
31 * 98
"

3038

Programming in Haskell
“Substitute Equals by Equals”
Really, that’s it!

Elements of Haskell

Expressions, Values, Types

Expressions

Values

Types

expression :: Type

N

value :: Type

The GHC System

Batch Compiler “ghc”
Compile & Run Large Programs

Interactive Shell “ghci”
Tinker with Small Programs

Interactive Shell: ghci

:load foo.hs
:type expression

sinfo variable

Basic Types

31 * (42 + 56) :: Integer
3 * (4.2 + 5.6) :: Double
‘a’ it Char
True :: Bool

Note: + and * overloaded ...

Function Types

A —-—> B
Function taking input of A, yielding output of B

pos :: Integer -> Bool

p0s X = (X > 0)

“Multi-Argument” Function Types

Al —> A2 —> A3 —> B

Function taking args of A1, A2, A3, giving out B

pat :: Int -> Int -> Int -> Bool
pat Xy z =x * (y + 2)

Bounded Sequence of values of type Al,...,An

(‘a’, 5) :: (Char, Int)
(‘a’, 5.2, 7) :: (Char, Double, Int)

((7, 5.2), True) :: C(’”t Dokéle))&ai)

‘(% 4, %T)‘ '“’f@(

What s luput Fype of pok

A. Int

8. lut = Ik = st

c. (I, lut, lut)

D. (Nam a,Nam o. , Num a.)
€. None of fle above !

Extracting Values From Tuples

(Al1,A2,..,An)
Pattern Matching extracts values from tuple

nat :: Int -> Int -> Int -> Bool

nat Xy z = x * (y + 2)

pat’ :: (Int, Int, Int) -> Int

pat’ (X, y, z) = x * (y + z)

[A]

Unbounded Sequence of values of types A

[€a’, “b’,‘c’] :: CCha,fJ
11,3,5,7] :: [Int]
[(1,True), (2,False)] :: 7
[[1],[2,3],[4,5,6]] :: 7

QU 2!

’

What s Hee fgfe df
[1,2,'¢c'J=7c¢

A.-[lnt] p. LAyl
8. [Char] £. [t +Chat]

c. [a]

List’s Values Must Have Same Type

[A]

Unbounded Sequence of values of types A
[1, 2, “c’]

Whatis A?

List’s Values Must Have Same Type

[A]

Unbounded Sequence of values of types A
[1, 2, “c’]

(Mysterious) Type Error!

“Cons”tructing Lists

(:) == 99->@ -> [a]

Input: element (“head”) and list (“tail”)

Output: new list with head followed by tail
(aJ:[(b),(CJ: |:>:(aJ,(bJ)(CJ]
1:[] =[1]

[I:[] =

“Cons”tructing Lists

cons2
cons2 X y zs = X:y:ZS

COﬂSZ Ca) fb) [(CJ: :Ca),(b))(CJ:

J 4

cons2 1 2 [3,4,5,6]=>[1,2,3,4,5,6]

QUIZ

cons :: 7?7

cons2 % Y 25 = z:4i e
A Juk = lut » [lut]

8. Jut — hot [kt T — [t]
c. & — o —[al

D. G = & — [aJ —[2]

E. a »[a]-»[a]—[a]

Syntactic Sugar

[x1,x2,..,Xn]

Is actually a pretty way of writing

X1:x2:..:xn:|[]

Function Practice : List Generation

clone :: a -> Int -> [a]
clone x n = 1f n==0
then []

else x:(clonex (n-1))

clone ‘a’ 4 = [‘a’,‘a’,‘a’, ‘a’]

clone 1.1 3 = [1.1, 1.1,1.1]

Function Practice : List Generation

clone :: a -> Int -> [a]
clone x @ =[]
clone x n = x:(clonex (n-1))

Define with multiple equations
More Readable

Function Practice : List Generation

clone :: a -> Int -> [a]
clone x @ =[]
clone x n = x:(clonex (n-1))

clone ‘a’ 3

— ‘a’:(clone ‘a’ 2)

— ‘a’:(‘a’:(clone ‘a’ 1))

— ‘a’:(‘a’:(‘a’:(clone ‘a’ 0)))
= faaz(‘a’;(aal: ([1)))

Function Practice : List Generation

clone :: a -> Int -> [a]
clone x 0 =[]
clone x n = x:(clonex (n-1))

Ugly, Complex Expression

Function Practice : List Generation

clone :: a -> Int -> [a]
clone x @ =[]

clone x n = let tl = clonex (n-1)
in x:tl

Define with local variables
More Readable

Function Practice : List Generation

clone :: a -> Int -> [a]
clone x @ =[]

clone x n = x:tl
where tl = clone x (n-1)

Define with local variables
More Readable

Function Practice : List Generation

range :: Int -> Int -> [Int]

range 1 j = if i<=j
then []
else i:(range (i+1) j)

range 2 8 = [2,3,4,5,6,7,8]

Function Practice : List Generation

range :: Int -> Int -> [Int]

[]
i:(range (i+1) j)

range i j | i<=j
| True

Define with multiple guards
More Readable

Function Practice : List Access

listAdd :: [Integer] -> Integer
listAdd [2,3,4,5,6] = 20

Access elements By Pattern Matching

listAdd []
listAdd (x:xs)

0
X + listAdd xs

Execution = Substitute Equals

Expressions, Value

Base Vals, Tuples, Lists, Functions

Next: Creating Types

Type Synonyms

Names for Compound Types
type XY = (Double, Double)

Not a new type, just shorthand

Type Synonyms

Werite types to represent:

Circle : x-coord, y-coord, radius
type Circle = (Double, Double, Double)

Square: x-coord, y-coord, side
type Square = (Double, Double, Double)

Type Synonyms

Bug Alarm!

Call areaSquare on circle, get back junk
IV A AN NN A

type Circle = (Double, Double, Double)
areaCircle (, ,r) = pi * r * r

type Square = (Double, Double, Double)
areaSquare (, ,d) =d * d

Solution: New Data Type

data CircleT =Circle (Double,Double,Double)
data SquareT =Square (Double,Double,Double)

Creates New Types
CircleT
SquareT

Solution: New Data Type

data CircleT =Circle (Double,Double,Double)
data SquareT =Square (Double,Double,Double)

Creates New Constructors

Circle :: (Double,Double,Double) -> CircleT
Square :: (Double,Double,Double) -> SquareT

Only way to create values of new type

Solution: New Data Type

data CircleT =Circle (Double,Double,Double)
data SquareT =Square (Double,Double,Double)

Creates New Constructors

Circle :: (Double,Double,Double) -> CircleT
Square :: (Double,Double,Double) -> SquareT

How to access/deconstruct values?

Deconstructing Data

areaSquare :: CircleT -> Double
areaCircle (Circle(_, ,r)) =pi *r *r

areaSquare :: SquareT -> Double
areaSquare (Square(_, ,d)) =d * d

How to access/deconstruct values?
Pattern Match...!

Deconstructing Data

areaSquare :: CircleT -> Double
areaCircle (Circle(_, ,r)) =pi *r *r

areaSquare :: SquareT -> Double
areaSquare (Square(_, ,d)) =d * d

Call areaSquareon CircleT?

Different Types: GHC catches bug!
MAALL VA A A A~

How to build a list with squares & circles?

Restriction: List elements have same type!

How to build a list with squares & circles?

Solution: Create a type to represent both!

Variant (aka Union) Types

Create a type to represent both!

data CorS =
Circle (Double,Double,Double)
Square (Double,Double,Double)

Circle(1,1,1) :: CorS
Square(2,3,4) :: CorS
[Circle(1,1,1), Square(2,3,4)] :: [CorS]

Quiz
Aokt Cog =~ (Circle (Doab/(, Doyu',ua“)

| Square (Double, Double, Do)

What is fype o Circke z
A. (oS
B. (Don ble . Double Dou.b/e)

¢. (Double, Double, Double) = (oS
0. Double = Double = Double — (o€

E. Not of flo wbove!

Variant (aka Union) Types

Access/Deconstruct by Pattern Match

data CorS =
Circle (Double,Double,Double)
Square (Double,Double,Double)

area :: CorS -> Double
area (Circle(_, ,r)) = pi*r*r
area (Square(, ,d)) = d*d

A Richer Shape

data Shape =

Rectangle (Double,
Ellipse (Double,
RtTriangle(Double,
Polygon [(Double,

Double)
Double)
Double)

Double)]

Lets drop the parens...

A Richer Shape

data Shape =

Rectangle Double Double
Ellipse Double Double
RtTriangle Double Double
Polygon [(Double, Double)]

Lets drop the parens...

A Richer Shape

data Shape =

Rectangle Double Double
Ellipse Double Double
RtTriangle Double Double
Polygon [(Double, Double)]

Why can’t we drop last case’s parens?

Making Shape Readable

data Shape =
Rectangle Side Side

Ellipse Radius Radius
RtTriangle Side Side
Polygon [Vertex

type Side Double
type Radius = Double
type Vertex = (Double, Double)

Calculating The Area

area :: Shape -> Double

area (Rectangle 1 b) = 1*b

area (RtTriangle b h) = b*h/2
area (Ellipse rl r2) = pi*rl*r2

GHC warns about missing case!

Calculating Area of Polygon

area (Polygon (v1l:v2:v3:vs))

= triArea vl v2 v3 + area (Polygon (vl:v3:vs))
area (Polygon)

= 0

“Hello World”
Input/Output in Haskell

Programs Interact With The World
(Don’t just compute values!)

Programs Interact With The World
Read files,
Display graphics,
Broadcast packets, ...

Programs Interact With The World
How to fit w/ values & calculation ?

/0 via an “Action” Value

Action
Value describing an effect on world

I0 a
Type of an action that returns an a

Example: Output Action

Just do something, return nothing

putStr :: String -> I0 ()
takes input string, returns action
that writes string to stdout

Example: Output Action

Only one way to “execute” action
make it the value of name main

main :: IO ()
main = putStr “Hello World! \n”

Example: Output Action

Compile and Run
ghc -0 hello helloworld.hs

main :: IO ()
main = putStr “Hello World! \n”

Example: Output Action

“Execute” in ghci
:1load helloworld.hs

main :: IO ()
main = putStr “Hello World! \n”

Actions Just Describe Effects

Writing does not trigger Execution

act2 :: (I0 (), I0 ())
act2 = (putStr “Hello”, putStr “World”)

Just creates a pair of actions...

main :: IO ()
How to do many actions?

main :: IO ()
By composing small actions

do putStr “Hello”
putStr “World”
putStr “\n”

Single Action
“Sequence” of sub-actions

do actl
act2

actn

Single Action
“Sequence” of sub-actions

do actl
act2

actn

Block Begin/End via Indentation
“Offside Rule” (Ch3. RWH)

Example: Input Action

Action that returns a value
getLine :: IO String

Read and Return Line from Stdin

Example: Input Action

Name result via “assighment”

X <- act

X refers to result in later code

Example: Input Action

Name result via “assighment”

main :: IO ()
main = do putStr “What is your name?”
n <- getlLine
putStrLn (“Happy New Year ” ++ n)

